1
|
Li B, Zhao X, Jin T, Wu Z, Yang H. Efficient isolation and purification of spermatogonia, spermatocytes, and spermatids from mice, piglets, and adult boars using an optimized STA-PUT method. Theriogenology 2024; 213:97-108. [PMID: 37820498 DOI: 10.1016/j.theriogenology.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Spermatogenesis is a delicate and complex biological process in which spermatogonial stem cells continue to proliferate and differentiate into mature spermatozoa, maintaining sperm production in male mammals throughout the lifetime. To study the molecular mechanism of spermatogenesis, researchers had to isolate different germ cell subpopulations for in vitro culture and characterization. However, due to the existence of several stages of germ cells and a variety of populations of somatic cells in the testis of male mammals, it is a challenge for us to obtain high-purity germ cell subpopulations for further research. Here, we optimized the STA-PUT device and successfully applied it to isolate and purify spermatogonia populations in piglets, and multiple germ cell populations at different developmental stages in testes of adult mice and boars. This work provides a simple platform for germ cell fractionation to facilitate the molecular mechanistic study of animal spermatogenesis in vitro.
Collapse
Affiliation(s)
- Bin Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Taili Jin
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
A comparison of the effects of fetal bovine serum and newborn calf serum on cell growth and maintenance of cryopreserved mouse spermatogonial stem cells. Mol Biol Rep 2020; 47:9609-9614. [PMID: 33211295 DOI: 10.1007/s11033-020-06004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Serum is a common supplement that is widely used to protect various cells and tissues from cryopreservation because it provides the necessary active components for cell growth and maintenance. In this study, we compared the effects of newborn calf serum (NCS) and fetal bovine serum (FBS) on the cryopreservation of mouse spermatogonial stem cells (SSCs). The isolated SSCs were cryopreserved in two groups: freezing medium that contained 10% DMSO (dimethyl sulfoxide) and 10% FBS in DMEM (Dulbecco's Modified Eagle's Medium) (group 1) and freezing medium that contained 10% DMSO and 10% NCS in DMEM (group 2). Real-time PCR was performed for stemness gene expression. The SSCs' viability was performed by trypan blue. We observed that the SSCs had increased viability in the NCS-freeze/thaw group (87.82%) compared to the FBS-freeze/thaw group (79.83%), but this increase was not statistically significant (P < 0.105). Promyelocytic leukemia zinc finger (Plzf) and Lin28 gene expression levels in the NCS-frozen/thawed SSCs were not significantly different compared to the FBS-frozen/thawed SSCs; however, Nanog gene expression increased considerably, and Dazl gene expression decreased significantly. The results in this study demonstrated that the presence of NCS in a solution of cryopreserved SSCs increased their viability after freeze/thawing and might promote the proliferation of cultivated SSCs in vitro by increasing the relative expression of Nanog.
Collapse
|
3
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
4
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
5
|
Bashawat M, Braun BC, Müller K. Cell survival after cryopreservation of dissociated testicular cells from feline species. Cryobiology 2020; 97:191-197. [PMID: 32194031 DOI: 10.1016/j.cryobiol.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
Testicular cell suspension (TCS) can be cryopreserved for male germ-line preservation and fertility restoration. We aimed to validate a cryopreservation protocol for TCS of domestic cat to be applied in endangered felids species. Testis tissue from adult domestic cats was enzymatically dissociated and spermatogenic cells were enriched. The resulting TCS was diluted in 7.5% or 15% Me2SO based medium. Slow and fast freezing methods were tested. We examined the effects of freezing approaches using two combinations of fluorescent dyes: Calcein-AM with Propidium iodide (C/PI) and SYBR14 with Propidium iodide (S/PI). Ploidy analysis of domestic cat fresh TCS revealed that the majority of testicular cells were haploid cells. Based on microscopic observation, two size populations (12.3 ± 2.3 μm and 20.5 ± 4 μm in diameter) were identified and presumed to be mainly spermatids and spermatocytes, respectively. Both evaluation methods proved higher viability of aggregated cells before and after cryopreservation compared with single cells, and superiority of low concentration of Me2SO (7.5%) in association with slow freezing to preserve viability of testicular cells. However, S/PI resulted in a more precise evaluation compared with the C/PI method. The combination of 7.5% Me2SO-based medium with slow freezing yielded post thaw viability of S/PI labeled aggregated (49.8 ± 20%) and single cells (31.5 ± 8.1%). Comparable results were achieved using testes of a Cheetah and an Asiatic golden cat. In conclusion, TCS from domestic cat can be successfully cryopreserved and has the potential to support fertility restoration of endangered felids species.
Collapse
Affiliation(s)
- M Bashawat
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany.
| | - B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| |
Collapse
|
6
|
Liu Y, Zhang Y, Yin J, Gao Y, Li Y, Bai D, He W, Li X, Zhang P, Li R, Zhang L, Jia Y, Zhang Y, Lin J, Zheng Y, Wang H, Gao S, Zeng W, Liu W. Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. J Biol Chem 2019; 294:18714-18725. [PMID: 31662436 DOI: 10.1074/jbc.ra119.010496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP-Seq (ULI-NChIP-Seq), and whole genome bisulfite sequencing (WGBS), we investigated genome-wide DNA methylation patterns and histone 3 Lys-9 trimethylation (H3K9me3) modifications during mouse spermatogenesis. We found that DNA methylation and H3K9me3 have distinct sequence preferences and dynamics in promoters and repeat elements during spermatogenesis. H3K9me3 modifications in histones at gene promoters were highly enriched in round spermatids. H3K9me3 modification on long terminal repeats (LTRs) and long interspersed nuclear elements (LINEs) was involved in silencing active transcription from these regions in conjunction with reestablishment of DNA methylation. Furthermore, H3K9me3 remodeling on the X chromosome was involved in meiotic sex chromosome inactivation and in partial transcriptional reactivation of sex chromosomes in spermatids. Our findings also revealed the DNA methylation patterns and H3K9me3 modification profiles of paternal and maternal germline imprinting control regions (gICRs) during spermatogenesis. Taken together, our results provide a genome-wide map of H3K9me3 modifications during mouse spermatogenesis that may be helpful for understanding male reproductive disorders.
Collapse
Affiliation(s)
- Yingdong Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenteng He
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xueliang Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongnan Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiaming Lin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi Zheng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wenxian Zeng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Moraveji SF, Esfandiari F, Sharbatoghli M, Taleahmad S, Nikeghbalian S, Shahverdi A, Baharvand H. Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. J Cell Biochem 2018; 120:613-621. [PMID: 30242874 DOI: 10.1002/jcb.27419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Abstract
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.
Collapse
Affiliation(s)
- Seyedeh-Faezeh Moraveji
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Sharbatoghli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
8
|
Costa GMJ, Avelar GF, Lacerda SMSN, Figueiredo AFA, Tavares AO, Rezende-Neto JV, Martins FGP, França LR. Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications. Cell Tissue Res 2017; 370:489-500. [PMID: 28831567 DOI: 10.1007/s00441-017-2673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
Abstract
The establishment of proper conditions for spermatogonial stem cells (SSCs) cryopreservation and storage represents an important biotechnological approach for the preservation of the genetic stock of valuable animals. This study demonstrates the effects of different cryopreservation protocols on the survival rates and phenotypic expression of SSCs in horses. The cells were enzymatically isolated from testes of eight adult horses. After enrichment and characterization of germ cells in the suspension, the feasibility of several cryopreservation protocols were evaluated. Three different cryomedia compositions, associated with three different methods of freezing (vitrification, slow-freezing and fast-freezing) were evaluated. Based on the rates of viable SSCs found before and after thawing, as well as the number of recovered cells after cryopreservation, the best results were obtained utilizing the DMSO-based cryomedia associated with the slow-freezing method. In addition, when isolated cells were cultured in vitro, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and immunofluorescence analysis indicated that the cryopreserved cells were as metabolically active as the fresh cells and were also expressing typical SSCs proteins (VASA, NANOS2 and GFRA1). Therefore, our results indicate that equine SSCs can be cryopreserved without impairment of structure, function, or colony-forming abilities.
Collapse
Affiliation(s)
- Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Gleide F Avelar
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Samyra M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - André F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - José V Rezende-Neto
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe G P Martins
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| |
Collapse
|
9
|
Cryopreservation and recovery of human endometrial epithelial cells with high viability, purity, and functional fidelity. Fertil Steril 2015; 105:501-10.e1. [PMID: 26515378 DOI: 10.1016/j.fertnstert.2015.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eECs) retaining molecular and functional characteristics of endometrial epithelium in vivo. DESIGN In vitro study using human endometrial cells. SETTING University research laboratory. PATIENT(S) Endometrial biopsies were obtained from premenopausal women undergoing benign gynecologic procedures. INTERVENTION(S) Primary eECs were cryopreserved in 1% fetal bovine serum/10% dimethylsulfoxide in Defined Keratinocyte Serum-Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. MAIN OUTCOME MEASURE(S) Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. RESULT(S) Endometrial epithelial cells recovered after cryopreservation (n = 5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared with eSF, recovered eECs displayed increased (P<.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eECs secreted levels of cytokines and growth factors similarly to freshly cultured eECs. Recovered eECs could form a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. CONCLUSION(S) We have developed a protocol for cryopreservation of eECs in which recovered cells after thawing demonstrate morphologic, transcriptomic, and functional characteristics of human endometrial epithelium in vivo.
Collapse
|
10
|
|
11
|
Langenstroth D, Kossack N, Westernströer B, Wistuba J, Behr R, Gromoll J, Schlatt S. Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 2014; 29:2018-31. [PMID: 24963164 DOI: 10.1093/humrep/deu157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? SUMMARY ANSWER We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. WHAT IS KNOWN ALREADY Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. STUDY DESIGN, SIZE, DURATION Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. MAIN RESULTS AND THE ROLE OF CHANCE This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth of more rapidly expanding somatic cells to be a major problem when establishing spermatogonial cultures. Initiating germ cell cultures from the supernatant and maintaining germ cells in suspension cultures minimized the somatic cell contamination and provided enriched germ cell fractions which displayed after 11 days of culture a significantly higher expression of germ cell markers genes (DDX-4, MAGE A-4; P < 0.05) compared with separately cultured attached cells. Additionally, germ cell transplantation experiments demonstrated a significantly higher absolute number of cells with colonization ability (P < 0.001) in supernatant cells after 11 days of separate culture. LIMITATIONS, REASONS FOR CAUTION This study presents a relevant aspect for the successful setup of spermatogonial cultures but provides limited data regarding the question of whether the long-term maintenance of spermatogonia can be achieved. Transfer of these preclinical data to man may require modifications of the protocol. WIDER IMPLICATIONS OF THE FINDINGS Spermatogonial cultures from rodents have become important and innovative tools for basic and applied research in reproductive biology and veterinary medicine. It is expected that spermatogonia-based strategies will be transformed into clinical applications for the treatment of male infertility. Our data in the marmoset monkey may be highly relevant to establish spermatogonial cultures of human testes. STUDY FUNDING/COMPETING INTERESTS Funding was provided by the DFG-Research Unit FOR 1041 Germ Cell Potential (SCHL394/11-2) and by the Graduate Program Cell Dynamics and Disease (CEDAD) together with the International Max Planck Research School - Molecular Biomedicine (IMPRS-MBM). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Daniel Langenstroth
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Nina Kossack
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Birgit Westernströer
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jörg Gromoll
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Stefan Schlatt
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
12
|
An J, Zhang X, Qin J, Wan Y, Hu Y, Liu T, Li J, Dong W, Du E, Pan C, Zeng W. The histone methyltransferase ESET is required for the survival of spermatogonial stem/progenitor cells in mice. Cell Death Dis 2014; 5:e1196. [PMID: 24763053 PMCID: PMC4001319 DOI: 10.1038/cddis.2014.171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022]
Abstract
Self-renewal and differentiation of spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout a male's life. SSC transplantation will be a valuable solution for young male patients to preserve their fertility. As SSCs in the collected testis tissue from the patients are very limited, it is necessary to expansion the SSCs in vitro. Previous studies suggested that histone methyltransferase ERG-associated protein with SET domain (ESET) represses gene expression and is essential for the maintenance of the pool of embryonic stem cells and neurons. The objective of this study was to determine the role of ESET in SSCs using in vitrocell culture and germ cell transplantation. Cell transplantation assay showed that knockdown of ESET reduced the number of seminiferous tubules with spermatogenesis when compared with that of the control. Knockdown of ESET also upregulated the expression of apoptosis-associated genes (such as P53, Caspase9, Apaf1), whereas inhibited the expression of apoptosis-suppressing genes (such as Bcl2l1, X-linked inhibitor of apoptosis protein). In addition, suppression of ESET led to increase in expression of Caspase9 and activation of Caspase3 (P17) as well as cleavage of poly (ADP-ribose) polymerase. Among the five ESET-targeting genes (Cox4i2, spermatogenesis and oogenesis Specific Basic Helix-Loop-Helix 2, Nobox, Foxn1 and Dazl) examined by ChIP assay, Cox4i2 was found to regulate SSC apoptosis by the rescue experiment. BSP analyses further showed that DNA methylation in the promoter loci of Cox4i2was influenced by ESET, indicating that ESET also regulated gene expression through DNA methylation in addition to histone methylation. In conclusion, we found that ESET regulated SSC apoptosis by suppressing of Cox4i2 expression through histone H3 lysine 9 tri-methylation and DNA methylation. The results obtained will provide unique insights that would broaden the research on SSC biology and contribute to the treatment of male infertility.
Collapse
Affiliation(s)
- J An
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - X Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - J Qin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Y Wan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Y Hu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - T Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - J Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - W Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - E Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - C Pan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - W Zeng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|
13
|
Isolation of osteoprogenitors from human jaw periosteal cells: a comparison of two magnetic separation methods. PLoS One 2012; 7:e47176. [PMID: 23094035 PMCID: PMC3477152 DOI: 10.1371/journal.pone.0047176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022] Open
Abstract
Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1+ and MSCA-1− fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1+ cells compared with the MSCA-1− controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.
Collapse
|