1
|
Ouyang L, Gao X, Yang R, Zhou P, Cai H, Tian Y, Wang H, Kong S, Lu Z. SHP2 regulates the HIF-1 signaling pathway in the decidual human endometrial stromal cells†. Biol Reprod 2025; 112:743-753. [PMID: 39893623 DOI: 10.1093/biolre/ioaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
The decidual endometrial stromal cells play a critical role in the establishment of uterine receptivity and pregnancy in human. Our previous studies demonstrate that protein tyrosine phosphatase 2 SHP2 is highly expressed in decidualized cells and governs the decidualization progress. However, the role and mechanism of SHP2 in the function of decidual cells remain unclear. Here, we screened proteins interacting with SHP2 in decidual hTERT-immortalized human endometrial stromal cells (T-HESCs) and identified Hypoxia-inducible factor-1 (HIF-1) signaling pathway as a potential SHP2-mediated signaling pathway through proximity-dependent biotinylation (BioID) analysis. Immunoprecipitation (Co-IP) revealed an interaction between SHP2 and HIF-1α, which colocalized to the nucleus in decidual cells. Furthermore, the SHP2 expression correlated with the transcriptional activation of HIF-1α and its downstream genes Beta-enolase (Eno3), Pyruvate kinase 2 (Pkm2), Aldolase C (Aldoc), and Facilitative glucose transporter 1 (Glut1). Knockdown or inhibition of SHP2 significantly reduced the mRNA and protein levels of HIF-1α and its downstream genes, as well as lactate production in decidual cells. We also established a hypoxia model of T-HESCs and 293 T cells and found that hypoxic treatment induced the expression of SHP2 and HIF-1α, which colocalized in the nucleus. SHP2 forced-expression rescued the inhibitory effects of SHP2 deficiency on HIF-1α expression and lactate production. Finally, SHP2 binds to the promoter regions of HIF-1α and its target genes (Eno3, Pkm2, Aldoc, and Glut1). Collectively, our results suggest that SHP2 influences the function of decidual cells by HIF-1α signaling and provide a novel function mechanism of decidual stromal cells.
Collapse
Affiliation(s)
- Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Xia Gao
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Rongyu Yang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Han Cai
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Nguyen TV, Do LTK, Lin Q, Nagahara M, Namula Z, Wittayarat M, Hirata M, Otoi T, Tanihara F. Programmed cell death-1-modified pig developed using electroporation-mediated gene editing for in vitro fertilized zygotes. In Vitro Cell Dev Biol Anim 2024; 60:716-724. [PMID: 38485817 DOI: 10.1007/s11626-024-00869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 08/03/2024]
Abstract
Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan.
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, 3290498, Japan.
| |
Collapse
|
3
|
Yang M, Liu Y, Zheng S, Geng P, He T, Lu L, Feng Y, Jiang Q. Associations of PD-1 and PD-L1 gene polymorphisms with cancer risk: a meta-analysis based on 50 studies. Aging (Albany NY) 2024; 16:6068-6097. [PMID: 38546391 PMCID: PMC11042937 DOI: 10.18632/aging.205689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Programmed death-1 and its ligand-1 (PD-1/PD-L1), immune checkpoints proteins, play a crucial role in anti-tumor responses. A large number of studies have evaluated the relationships of PD-1/PD-L1 polymorphisms with risk of cancer, but evidence for the associations remains inconsistent. Therefore, we performed a meta-analysis to examine the associations between PD-1/PD-L1 single nucleotide polymorphisms (SNPs) and cancer predisposition. Results showed that PD-1.3 and PD-L1 rs17718883 were significantly correlated with overall cancer risk. PD-1.5 was prominently linked with cervical cancer (CC), non-small cell lung cancer (NSCLC), TC (thyroid cancer), brain tumor, AML (acute myelocytic leukemia) and UCC (urothelial cell carcinoma) risk, PD-1.9 with breast cancer (BC), AML, esophageal cancer (EC) and ovarian cancer (OC) risk, and PD-1.3 with colorectal cancer (CRC) and BCC (basal cell carcinoma) risk. PD-1.1 polymorphism slightly elevated BC and OC susceptibility, whereas the rs4143815 variant notably decreased the risk of gastric cancer (GC), hepatocellular carcinoma (HCC) and OC, but increased the risk of BC. PD-1.6 was closely linked with AML risk, PD-L1 rs2890658 with NSCLC, HCC and BC risk, rs17718883 with HCC and GC risk, rs10815225 with GC risk, and rs2297136 with NSCLC and HCC risk. Interestingly, the rs7421861, rs10815225, and rs10815225 markedly reduced cancer susceptibility among Asians. The rs7421861 polymrophism decreased cancer risk among Caucasians, rather than the rs10815225 elevated cancer risk. Our results supported that PD-1 and PD-L1 SNPs were dramatically correlated with cancer risk.
Collapse
Affiliation(s)
- Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, Shandong, China
| | - Yan Liu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Shuangshuang Zheng
- Department of Health, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261042, Shandong, China
| | - Tianhao He
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Linan Lu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Yikuan Feng
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| | - Qiqi Jiang
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Shandong Second Medical University, Kuiwen, Weifang 261000, Shandong, China
| |
Collapse
|
4
|
Hassani N, Salmaninejad A, Aslani S, Kamali-sarvestani E, Vessal M. The association between PD-1 gene polymorphisms and susceptibility to multiple sclerosis. Immunol Med 2022; 46:69-76. [PMID: 36308011 DOI: 10.1080/25785826.2022.2137967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Programmed cell death 1 (PD-1) is an immune checkpoint and has been reported to be associated with several autoimmune diseases. We aimed to investigate the association between human PD-1 gene (PDCD1) polymorphisms and multiple sclerosis (MS). This case-control study was conducted on 229 MS patients and 246 healthy controls. Genotyping of rs36084323 (PD-1.1 G/A), rs11568821 (PD-1.3 G/A) and rs2227981 (PD-1.5 C/T) polymorphisms was performed by PCR-RFLP technique. The frequency difference of PD-1.1 genotypes and alleles (-536 G/A) between patients and healthy controls was not significant. Regarding PD-1.3, the AA + AG genotype was found to be relatively higher in the control group. Concerning PD-1.5 (+7785 C/T), the frequency of T allele carriers (TT + CT) was relatively higher in MS patients, which was marginally insignificant (p = .07). PD-1 gene polymorphisms may be associated with MS; however, accurate conclusions require further studies with a larger number of samples.
Collapse
Affiliation(s)
- Nasrin Hassani
- Department of Molecular Biology, Faculty of Medicine, Islamic Azad University, Shiraz, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Aslani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eskandar Kamali-sarvestani
- Department of Immunology and Autoimmune Diseases Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Vessal
- Department of Molecular Biology, Faculty of Medicine, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
5
|
The role of the Immune System in the Development of Endometriosis. Cells 2022; 11:cells11132028. [PMID: 35805112 PMCID: PMC9265783 DOI: 10.3390/cells11132028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Endometriosis is a chronic disease that affects about 10% of women of reproductive age. It can contribute to pelvic pain, infertility or other conditions such as asthma, cardiovascular disease, breast or ovarian cancer. Research has shown that one of the conditions for the development of endometrial lesions is the dysfunction of the immune system. It appears that immune cells, such as neutrophils, macrophages, NK cells and dendritic cells, may play a specific role in the angiogenesis, growth and invasion of endometriosis cells. Immune cells secrete cytokines and defensins that also affect the endometriosis environment. This review discusses the various components of the immune system that are involved in the formation of endometrial lesions in women.
Collapse
|
6
|
Leathersich S, Hart RJ. Immune infertility in men. Fertil Steril 2022; 117:1121-1131. [PMID: 35367058 DOI: 10.1016/j.fertnstert.2022.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022]
Abstract
Male factors are implicated as the cause of roughly half of cases of infertility, and the presence of antisperm antibodies (ASA) may be responsible for some of these. Their presence is associated with a reduction in natural conception and live birth and impacts the success of assisted reproductive technologies. Interpretation of the data regarding ASAs and fertility is complicated by a lack of standardization in testing methodology and test thresholds and a lack of data on their prevalence in the healthy fertile population. Although their pathogenesis remains elusive, and many cases are idiopathic, a disruption in the immunologic blood-testis barrier (BTB) appears to contribute to the formation of ASA. As delineation of the specific antigen targets of ASA advances, it has been recognized that they may affect almost all aspects of sperm function, and ASA against different targets likely have specific mechanisms of impairing fertility. Intracytoplasmic sperm injection (ICSI) appears to be the most reliable method by which to overcome fertility impairment due to ASA, achieving similar outcomes to ASA-negative patients with regard to fertilization rates, embryonic development, clinical pregnancy rates, and live birth rates. The lack of consistency in testing for and reporting ASA remains a substantial barrier to achieving clarity in describing their role in infertility and the optimal management approach, and future research should use a unified approach to the detection and description of ASA. Determination of the specific antigens targeted by ASA, and their function and clinical relevance, would contribute to improving the understanding of ASA-mediated impacts on fertility and tailoring treatment appropriately to achieve the best outcomes for patients.
Collapse
Affiliation(s)
- Sebastian Leathersich
- King Edward Memorial Hospital, Perth, Australia; Fertility Specialists of Western Australia, Claremont, Australia
| | - Roger J Hart
- King Edward Memorial Hospital, Perth, Australia; Fertility Specialists of Western Australia, Claremont, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia.
| |
Collapse
|
7
|
Impact of PD-1 gene polymorphism and its interaction with tea drinking on susceptibility to tuberculosis. Epidemiol Infect 2021; 149:e29. [PMID: 33436123 PMCID: PMC8057366 DOI: 10.1017/s0950268821000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to explore the impact of polymorphism of PD-1 gene and its interaction with tea drinking on susceptibility to tuberculosis (TB). A total of 503 patients with TB and 494 controls were enrolled in this case–control study. Three single-nucleotide polymorphisms of PD-1 (rs7568402, rs2227982 and rs36084323) were genotyped and unconditional logistic regression analysis was used to identify the association between PD-1 polymorphism and TB, while marginal structural linear odds models were used to estimate the interactions. Genotypes GA (OR 1.434), AA (OR 1.891) and GA + AA (OR 1.493) at rs7568402 were more prevalent in the TB patients than in the controls (P < 0.05). The relative excess risk of interaction (RERI) between rs7568402 of PD-1 genes and tea drinking was −0.3856 (95% confidence interval −0.7920 to −0.0209, P < 0.05), which showed a negative interaction. However, the RERIs between tea drinking and both rs2227982 and rs36084323 of PD-1 genes were not statistically significant. Our data demonstrate that rs7568402 of PD-1 genes was associated with susceptibility to TB, and there was a significant negative interaction between rs7568402 and tea drinking. Therefore, preventive measures through promoting the consumption of tea should be emphasised in the high-risk populations.
Collapse
|
8
|
Okazaki T, Okazaki IM. Stimulatory and Inhibitory Co-signals in Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:213-232. [PMID: 31758536 DOI: 10.1007/978-981-32-9717-3_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Co-receptors cooperatively regulate the function of immune cells to optimize anti-infectious immunity while limiting autoimmunity by providing stimulatory and inhibitory co-signals. Among various co-receptors, those in the CD28/CTLA-4 family play fundamental roles in the regulation of lymphocytes by modulating the strength, quality, and/or duration of the antigen receptor signal. The development of the lethal lymphoproliferative disorder and various tissue-specific autoimmune diseases in mice deficient for CTLA-4 and PD-1, respectively, clearly demonstrates their pivotal roles in the development and the maintenance of immune tolerance. The recent success of immunotherapies targeting CTLA-4 and PD-1 in the treatment of various cancers highlights their critical roles in the regulation of cancer immunity in human. In addition, the development of multifarious autoimmune diseases as immune-related adverse events of anti-CTLA-4 and anti-PD-1/PD-L1 therapies and the successful clinical application of the CD28 blocking therapy using CTLA-4-Ig to the treatment of arthritis assure their crucial roles in the regulation of autoimmunity in human. Accumulating evidences in mice and humans indicate that genetic and environmental factors strikingly modify effects of the targeted inhibition and potentiation of co-signals. In this review, we summarize our current understanding of the roles of CD28, CTLA-4, and PD-1 in autoimmunity. Deeper understandings of the context-dependent and context-independent functions of co-signals are essential for the appropriate usage and the future development of innovative immunomodulatory therapies for a diverse array of diseases.
Collapse
Affiliation(s)
- Taku Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Il-Mi Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Ghapanchi J, Ghaderi H, Haghshenas MR, Jamshidi S, Rezazadeh F, Azad A, Farzin M, Derafshi R, Kalantari AH. Observational Molecular Case-Control Study of Genetic Polymorphisms 1 in Programmed Cell Death Protein-1 in Patients with Oral Lichen Planus. Asian Pac J Cancer Prev 2019; 20:421-424. [PMID: 30803202 PMCID: PMC6897023 DOI: 10.31557/apjcp.2019.20.2.421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: The association between programmed cell death protein 1 (PD-1) variations and susceptibility to autoimmune diseases has been recurrently reported. However, there is no report about its relationship with oral lichen planus (OLP) as one of autoimmune diseases. Methods: We investigated the association between genetic predisposition to OLP and two single nucleotide polymorphisms in PD-1. Results: GG, GA, and AA genotypes at position +7146 were found in 59 (80.8 %), 10 (13.7 %), and 4 (5.5 %) patients, and in 132 (77 %), 34 (20 %), and 5 (3 %) healthy participants. CC, CT, and TT genotypes at position +7785 were found in 32 (43.8 %), 35 (47.9 %), and 6 (8.2 %) patients and in 99 (58 %), 66 (39 %), and 6 (3 %) controls. Analysis indicated that patients’ genotypes were not statistically different from controls’ genotypes at both positions +7146 (P = 0.35 and P = 0.98) and +7785 (P = 0.07 and P = 0.06). Conclusion: The findings indicated that PD-1 SNPs at +7146 [PD-1.3] G/A and +7785 [PD-1.5] C/T was not associated with susceptibility to OLP. However, further research with higher sample size and in different geographical regions is needed in order to achieve the generalizability of the findings.
Collapse
Affiliation(s)
- Janan Ghapanchi
- Department of Oral Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The Increase of Circulating PD-1- and PD-L1-Expressing Lymphocytes in Endometriosis: Correlation with Clinical and Laboratory Parameters. Mediators Inflamm 2018; 2018:7041342. [PMID: 30595667 PMCID: PMC6286737 DOI: 10.1155/2018/7041342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
The cause of endometriosis remains unknown. However, studies investigating the link between this condition and the immune system revealed several immunological abnormalities focused on cell-mediated immunity. As a major immune checkpoint, programmed cell death protein 1 (PD-1) displays an important inhibitory function in the maintenance of peripheral tolerance. The expression of PD-1 and its ligand (PD-L1) may contribute to continuous T cell activation and development of inflammation and injury of the tissue. To our knowledge, this is the first study evaluating frequencies of PD-1-positive T CD3+ cells (CD4+ and CD8+) and B cells (CD19+) in patients with endometriosis. Peripheral blood (PB) samples from 25 female patients and 20 healthy age and sex-matched subjects serving as controls were used in the study. Using flow cytometric analysis, we assessed the differences in the frequencies of PD-1-positive T and B lymphocytes in the study group and healthy individuals. Alteration of the PD-1/PD-L1 axis may contribute to the pathogenesis of endometriosis, as patients with advanced disease are characterized by higher frequencies of PD-1-positive T and B cells. Expression of PD-1 and PD-L1 on T and B cells could represent the hallmark of immune system reaction to chronic antigenic exposition in patients with endometriosis.
Collapse
|
11
|
Fathi F, Faghih Z, Khademi B, Kayedi T, Erfani N, Gahderi A. PD-1 Haplotype Combinations and Susceptibility of Patients to Squamous Cell Carcinomas of Head and Neck. Immunol Invest 2018; 48:1-10. [PMID: 30375891 DOI: 10.1080/08820139.2018.1538235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinomas (HNSCCs) are the most common cancers of head and neck and the sixth most common malignancy worldwide. Programmed cell death 1 (PD-1) is an immune inhibitory molecule which through interaction with its ligands recruits protein phosphatase resulting in immune response inhibition. Expression of PD-1 ligands on tumor cells is considered as one of the crucial immune evasion mechanisms. This study aimed to investigate the association of PD-1 gene polymorphisms at positions PD1.3 (rs11568821), PD1.5 (rs2227981) and PD1.9 (rs2227982) with susceptibility to HNSCCs. SUBJECTS AND METHODS 150 patients pathologically confirmed to suffer from HNSCCs and 150 age-sex matched healthy controls were recruited in this study. Genomic DNA was extracted from white blood cells of all participants. Restricted fragment length polymorphisms (RFLP)-PCR was performed using site specific primers to determine the genotypes in each position. RESULTS Statistical analyses indicated no significant differences in the frequencies of genotypes, alleles as well as haplotypes between patients and controls (P > 0.05), however, haplotype combination differed significantly between two groups. GCC/GCT, GCC/GCC and GCT/GCC were higher in the HNSCC patients than the control group (P < 0.05). On the other hand, in the controls, GCT/GCT, GCT/ACC, GCT/ACT and ACC/GCT were more frequent. No significant association was found with various HNSCC clinicopathological characteristics. DISCUSSION Our results suggested that although PD-1 gene polymorphisms at three investigated positions are not solely associated with susceptibility to HNSCCs, haplotype combinations emerged from these three loci may render susceptibility.
Collapse
Affiliation(s)
- Farshid Fathi
- a Department of Immunology , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran.,b Shiraz Institute for Cancer Research, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Faghih
- b Shiraz Institute for Cancer Research, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bijan Khademi
- c Otolaryngology Research Center, Department of Otorhinolaryngology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Toomaj Kayedi
- d Shahid Rajaeei Truma Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Nasrollah Erfani
- a Department of Immunology , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran.,b Shiraz Institute for Cancer Research, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Abbas Gahderi
- a Department of Immunology , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran.,b Shiraz Institute for Cancer Research, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
12
|
Salmaninejad A, Khoramshahi V, Azani A, Soltaninejad E, Aslani S, Zamani MR, Zal M, Nesaei A, Hosseini SM. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 2017. [PMID: 28642997 DOI: 10.1007/s00251-017-1015-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The programmed cell death protein 1 (PD-1) is expressed by activated T cells that act as an immunoregulatory molecule, and are responsible for the negative regulation of T cell activation and peripheral tolerance. The PD-1 gene also encodes an inhibitory cell surface receptor involved in the regulation of T cell functions during immune responses/tolerance. Beyond potent inhibitory effects on T cells, PD-1 also has a role in regulating B cell and monocyte responses. An overexpression of PD-1 has been reported to contribute to immune system avoidance in different cancers. In particular, PD-1 over-expression influences tumor-specific T cell immunity in a cancer microenvironment. Blocking the PD-1/PD-1 ligand (PD-L1) pathway could potentially augment endogenous antitumor responses. Along these lines, the use of PD-1/PD-L1 inhibitors has been applied in clinical trials against diverse forms of cancer. It was believed that antibodies targeting PD-1/PD-L1 might synergize with other treatments that enhance endogenous antitumor immunity by blocking inhibitory receptor-ligand interactions. However, in all cases, the host genetic status (as well as that of the tumor) is likely to have an impact on the expected outcomes. Various investigations have evaluated the association between PD-1 polymorphisms and the risk of various types of cancer. Frequently studied PD-1 polymorphisms, PD-1.1 (rs36084323), PD-1.3 (rs11568821), PD-1.5 (rs2227981), PD-1.9 (rs2227982), and PD-1 rs7421861, and their associations in the risk of susceptibility to different types of cancer are mentioned in this review, as are studies highlighting the significance of conducting genetic association studies in different ethnic populations.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khoramshahi
- Department of Immunology, International Campus of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Azani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Soltaninejad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zamani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Zal
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Science, Tehran, Iran.
| |
Collapse
|
13
|
Aslani S, Mahmoudi M, Salmaninejad A, Poursani S, Ziaee V, Rezaei N. Lack of Association between STAT4 Single Nucleotide Polymorphisms and Iranian Juvenile Rheumatoid Arthritis Patients. Fetal Pediatr Pathol 2017; 36:177-183. [PMID: 28524764 DOI: 10.1080/15513815.2016.1253809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Juvenile rheumatoid arthritis (JRA) is a common chronic systemic autoimmune disease in children. Single nucleotide polymorphisms (SNPs) of signal transducer and activator of transcription 4 (STAT4) gene are suspected to have association with the risk of autoimmune diseases. Previous investigations have indicated that the STAT4 rs7574865 T allele was significantly associated with rheumatoid arthritis. In this study, we aimed to evaluate the association of STAT4 SNPs with JRA in Iranian population. T allele of STAT4 rs7574865 SNP was less frequent in patients than in controls, and the difference was not significant (p = 0.19, OR = 0.72, 95% CI: 0.44 -1.17). In addition, G allele of this SNP was frequent but not significant in JRA patients (p = 0.19, OR = 1.38, 95% CI: 0.85-2.25). Neither alleles nor genotypes of rs7601754 SNP of STAT4 gene demonstrated associations with JRA. We recognize that gene variants of STAT4 did not affect JRA susceptibility in Iranian population.
Collapse
Affiliation(s)
- Saeed Aslani
- a Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdi Mahmoudi
- a Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Arash Salmaninejad
- a Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran.,c Student Research Committee, Medical Genetics Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Shiva Poursani
- a Rheumatology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Vahid Ziaee
- d Pediatric Rheumatology Research Group , Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran.,e Division of Pediatric Rheumatology, Pediatrics Center of Excellence , Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- b Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Research Center for Immunodeficiencies , Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Sheffield , UK
| |
Collapse
|
14
|
Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunol 2016; 310:27-41. [PMID: 27660198 DOI: 10.1016/j.cellimm.2016.09.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
Abstract
Programmed death 1 (PD-1) and its ligands, namely PD-L1 and PD-L2, are one of the key factors responsible for inhibitory T cell signaling, mediating the mechanisms of tolerance and providing immune homeostasis. Mounting evidence demonstrates that impaired PD-1:PD-L function plays an important role in a variety of autoimmune diseases such as Type 1 diabetes (T1D), encephalomyelitis, inflammatory bowel diseases (IBD), Rheumatoid Arthritis (RA), autoimmune hepatitis (AIH), Behcet's disease (BD), myasthenia gravis (MG), autoimmune uveitis (AU), Sjögren's syndrome (SjS), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), myocarditis, and ankylosing spondylitis (AS). By investigating the candidate genes, genome-wide association studies, and identification of single nucleotide polymorphisms (SNPs) in PD-1 gene in humans, it has been shown that there is a higher risk in relevant genetic associations with developing autoimmune diseases in certain ethnic groups. In this review we have tried to present a comprehensive role of PD-1:PD-L in all recently studied autoimmune diseases.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeed Aslani
- Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Rezaei
- Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|