1
|
Podda A, Dujíčková L, Ariu F, Leoni GG, Izquierdo D, Paramio MT, Bogliolo L. Effect of Liquid Marble 3D Culture System on In Vitro Maturation and Embryo Development of Prepubertal Goat Oocytes. Animals (Basel) 2025; 15:188. [PMID: 39858188 PMCID: PMC11758309 DOI: 10.3390/ani15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Suboptimal culture conditions during in vitro maturation (IVM) affect oocyte developmental competence and the viability of the resulting embryo. Three-dimensional (3D) culture systems provide a more biologically appropriate environment compared to traditional two-dimensional (2D) cultures. The aim of this study was to evaluate the effect of liquid marble (LM) microbioreactors as a 3D culture system on IVM and the subsequent embryo development of prepubertal goat oocytes. The cumulus-oocyte complexes (COCs) recovered from prepubertal goat ovaries underwent IVM in drops under oil (the 2D system and the control group) and in the 3D LM system (the LM group). After IVM, oocytes were parthenogenetically activated and cultured until the blastocyst stage. The control and LM groups showed similar rates of nuclear maturation (52.17% and 44.12%) and blastocyst formation (10.64% and 10.10%). Reactive oxygen species and glutathione levels and the density of transzonal projections (TZPs) in oocytes did not differ between groups. The LM system increased mitochondrial activity and modified the organization of these organelles in the oocyte cytoplasm compared to the control group. The LM microbioreactor demonstrated the ability to improve the mitochondrial status of the oocytes and was not harmful for oocyte IVM and subsequent embryo development. Therefore, LM could be used as a 3D cost-effective culture system for the IVM of prepubertal goat oocytes.
Collapse
Affiliation(s)
- Andrea Podda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | - Linda Dujíčková
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| | | | - Dolors Izquierdo
- Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (D.I.); (M.-T.P.)
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (D.I.); (M.-T.P.)
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy; (A.P.); (L.D.); (F.A.)
| |
Collapse
|
2
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
3
|
Fernández-Montoro A, Angel-Velez D, Benedetti C, Azari-Dolatabad N, Pascottini OB, Van Soom A, Pavani KC. Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates. Animals (Basel) 2023; 13:ani13101635. [PMID: 37238065 DOI: 10.3390/ani13101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In vivo-matured oocytes exhibit higher developmental competence than those matured in vitro but mimicking the in vivo environment by in vitro conditions has been challenging. Until now, conventional two-dimensional (2D) systems have been used for in vitro maturation of bovine cumulus-oocytes-complexes (COCs). However, using such systems present certain limitations. Therefore, alternative low-cost methodologies may help to optimize oocyte in vitro maturation. Here, we used two different systems to culture COCs and evaluate their potential influence on embryo development and quality. In the first system, we used treated fumed silica particles to create a 3D microenvironment (liquid marbles; LM) to mature COCs. In the second system, we cultured COCs in 96-well plates with different dimensions (flat, ultra-low attachment round-bottom, and v-shaped 96-well plates). In both systems, the nuclear maturation rate remained similar to the control in 2D, showing that most oocytes reached metaphase II. However, the subsequent blastocyst rate remained lower in the liquid marble system compared with the 96-well plates and control 2D systems. Interestingly, a lower total cell number was found in the resulting embryos from both systems (LM and 96-well plates) compared with the control. In conclusion, oocytes matured in liquid marbles or 96-well plates showed no remarkable change in terms of meiotic resumption. None of the surface geometries influenced embryo development while oocyte maturation in liquid marbles led to reduced embryo development. These findings show that different geometry during maturation did not have a large impact on oocyte and embryo development. Lower embryo production after in vitro maturation in liquid marbles was probably detected because in vitro maturation was performed in serum-free medium, which makes oocytes more sensitive to possible toxic effects from the environment.
Collapse
Affiliation(s)
- Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences-INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
4
|
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM Advances for Early Antral Follicle-Enclosed Oocytes Coupling Reproductive Tissue Engineering to Inductive Influences of Human Chorionic Gonadotropin and Ovarian Surface Epithelium Coculture. Int J Mol Sci 2023; 24:ijms24076626. [PMID: 37047595 PMCID: PMC10095509 DOI: 10.3390/ijms24076626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In vitro maturation (IVM) is not a routine assisted reproductive technology (ART) for oocytes collected from early antral (EA) follicles, a large source of potentially available gametes. Despite substantial improvements in IVM in the past decade, the outcomes remain low for EA-derived oocytes due to their reduced developmental competences. To optimize IVM for ovine EA-derived oocytes, a three-dimensional (3D) scaffold-mediated follicle-enclosed oocytes (FEO) system was compared with a validated cumulus-oocyte complex (COC) protocol. Gonadotropin stimulation (eCG and/or hCG) and/or somatic cell coculture (ovarian vs. extraovarian-cell source) were supplied to both systems. The maturation rate and parthenogenetic activation were significantly improved by combining hCG stimulation with ovarian surface epithelium (OSE) cells coculture exclusively on the FEO system. Based on the data, the paracrine factors released specifically from OSE enhanced the hCG-triggering of oocyte maturation mechanisms by acting through the mural compartment (positive effect on FEO and not on COC) by stimulating the EGFR signaling. Overall, the FEO system performed on a developed reproductive scaffold proved feasible and reliable in promoting a synergic cytoplasmatic and nuclear maturation, offering a novel cultural strategy to widen the availability of mature gametes for ART.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- DGS S.p.A., 00142 Rome, Italy
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Zwamel AH, Fakhrildin MBMR, Hassani HH. EVALUATION OF TWO CRYOPROTECTANTS USED IN A NEW HUMAN SPERM CRYOPRESERVATION TECHNIQUE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3031-3035. [PMID: 36723322 DOI: 10.36740/wlek202212123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To examine the efficiency of different concentrations of Dimethyl sulfoxide (DMSO) and glycerol as a cytoprotectants in protection of human sperms during cryopres¬ervation in this technique. PATIENTS AND METHODS Materials and methods: Thirty oligozoospermic semen samples were used in this study. Samples diagnosed according to WHO 2010 criteria. Sheep's ovarian follicles obtained from local slaughterhouse and prepared by slicing the ovaries and evacuating the follicular fluid and oocyte. Each semen sample divided into six equal parts, and diluted 1:1 with cryosolution contains 5%, 10%, 15% DMSO or glycerol and injected within the emptied follicles. After freezing and thawing, the semen mixture aspired outside the follicles and sperm concentration, progressive motility, total motility, and normal morphology were examined. RESULTS Results: The best recovery rate of progressive and total motility post-thawing were with the use of 5% glycerol, and the lowest recovery rate of progressive and total motility and normal morphology were with the use of 15% DMSO. CONCLUSION Conclusions: In this technique, glycerol was more efficient than DMSO regarding sperm motility. The best concentration of glycerol for cryopreserve human spermatozoa is 5%.
Collapse
Affiliation(s)
- Ahmed H Zwamel
- RADIOLOGY TECHNIQUES DEPARTMENT, COLLEGE OF MEDICAL TECHNOLOGY, THE ISLAMIC UNIVERSITY, NAJAF, IRAQ
| | | | - Hayfa H Hassani
- DEPARTMENT OF BIOLOGY, COLLEGE OF SCIENCE, UNIVERSITY OF BAGHDAD, BAGHDAD, IRAQ
| |
Collapse
|
6
|
Ferronato GDA, Dos Santos CM, Rosa PMDS, Bridi A, Perecin F, Meirelles FV, Sangalli JR, da Silveira JC. Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3D culture system. PLoS One 2023; 18:e0284809. [PMID: 37083878 PMCID: PMC10121032 DOI: 10.1371/journal.pone.0284809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
Despite the advances in in vitro embryo production (IVP) over the years, the technique still has limitations that need to be overcome. In cell cultures, it is already well established that three-dimensional culture techniques are more physiological and similar to the in vivo development. Liquid marble (LM) is a three-dimensional system based on the use of a hydrophobic substance to create in vitro microbioreactors. Thus, we hypothesized that the LM system improves bovine in vitro oocyte maturation and embryo culture. In experiment I, bovine cumulus-oocyte complexes (COCs) were placed for in vitro maturation for 22h in two different groups: control (conventional 2D culture) and LM (three-dimensional culture). We found that oocyte nuclear maturation was not altered by the LM system, however it was observed a decrease in expression of genes important in the oocyte maturation process in cumulus cells of LM group (BCL2, EIF4E, and GAPDH). In experiment II, the COCs were conventionally matured and fertilized, and for culture, they were divided into LM or control groups. There was a decrease in blastocyst rate and cell counting, a down-regulation of miR-615 expression, and an increase in the DNA global methylation and hydroxymethylation in embryos of LM group. Therefore, for the bovine in vitro embryo production, this specific three-dimensional system did not present the advantages that we expected, but demonstrated that the embryos changed their development and epigenetics according to the culture system.
Collapse
Affiliation(s)
- Giuliana de Avila Ferronato
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Carolina Mônica Dos Santos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paola Maria da S Rosa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
7
|
Falchi L, Ledda S, Zedda MT. Embryo biotechnologies in sheep: Achievements and new improvements. Reprod Domest Anim 2022; 57 Suppl 5:22-33. [PMID: 35437835 PMCID: PMC9790389 DOI: 10.1111/rda.14127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
To date, large-scale use of multiple ovulation and embryo transfer (MOET) programmes in ovine species is limited due to unpredictable results and high costs of hormonal stimulation and treatment. Therefore, even if considered reliable, they are not fully applicable in large-scale systems. More recently, the new prospects offered by in vitro embryo production (IVEP) through collection of oocytes post-mortem or by repeated ovum pick-up from live females suggested an alternative to MOET programmes and may be more extensively used, moving from the exclusive research in the laboratory to field application. The possibility to perform oocytes recovery from juvenile lambs to obtain embryos (JIVET) offers the great advantage to significantly reduce the generation interval, speeding the rate of genetic improvement. Although in the past decades several studies implemented novel protocols to enhance embryo production in sheep, the conditions of every single stage of IVEP can significantly affect embryo yield and successful transfer into the recipients. Moreover, the recent progresses on embryo production and freezing technologies might allow wider propagation of valuable genes in small ruminants populations and may be used for constitution of flocks without risks of disease. In addition, they can give a substantial contribution in preserving endangered breeds. The new era of gene editing might offer innovative perspectives in sheep breeding, but the application of such novel techniques implies involvement of specialized operators and is limited by relatively high costs for embryo manipulation and molecular biology analysis.
Collapse
Affiliation(s)
- Laura Falchi
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Sergio Ledda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Maria T. Zedda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| |
Collapse
|
8
|
Passos JRS, Guerreiro DD, Otávio KS, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Nuñez-Olivera R, Crispo M, Vasconcelos FR, Bezerra MJB, Silva RF, Lima LF, Figueiredo JR, Bustamante-Filho IC, Menchaca A, Moura AA. How in vitro maturation changes the proteome of ovine cumulus-oocyte complexes? Mol Reprod Dev 2022; 89:459-470. [PMID: 35901249 DOI: 10.1002/mrd.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
The present study evaluated the effects of in vitro maturation (IVM) on the proteome of cumulus-oocyte complexes (COCs) from ewes. Extracted COC proteins were analyzed by LC-MS/MS. Differences in protein abundances (p < 0.05) and functional enrichments in immature versus in vitro-matured COCs were evaluated using bioinformatics tools. There were 2550 proteins identified in the COCs, with 89 and 87 proteins exclusive to immature and mature COCs, respectively. IVM caused downregulation of 84 and upregulation of 34 proteins. Major upregulated proteins in mature COCs were dopey_N domain-containing protein, structural maintenance of chromosomes protein, ubiquitin-like modifier-activating enzyme 2. Main downregulated proteins in mature COCs were immunoglobulin heavy constant mu, inter-alpha-trypsin inhibitor heavy chain 2, alpha-2-macroglobulin. Proteins exclusive to mature COCs and upregulated after IVM related to immune response, complement cascade, vesicle-mediated transport, cell cycle, and extracellular matrix organization. Proteins of immature COCs and downregulated after IVM were linked to metabolic processes, immune response, and complement cascade. KEGG pathways and miRNA-regulated genes attributed to downregulated and mature COC proteins related to complement and coagulation cascades, metabolism, humoral response, and B cell-mediated immunity. Thus, IVM influenced the ovine COC proteome. This knowledge supports the future development of efficient IVM protocols for Ovis aries.
Collapse
Affiliation(s)
- José Renato S Passos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Denise D Guerreiro
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Kamila S Otávio
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marcela Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Federico Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fábio R Vasconcelos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Julia B Bezerra
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | | | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.,Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Arlindo A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
10
|
Langella A, Gadau SD, Serra E, Bebbere D, Ledda S. Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. BIOLOGY 2022; 11:biology11040492. [PMID: 35453692 PMCID: PMC9031767 DOI: 10.3390/biology11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is a brain tumour frequently used as an experimental model to exploit innovative therapeutic approaches due to its high lethality and refractoriness to therapies. Part of these innovative anticancer therapies address cytoskeletal microtubules (MTs) since specific tubulin post-translational modifications (PTMs) are considered markers of tumour plasticity. In vitro studies, which traditionally employ two-dimensional (2D) culture systems, are now being replaced by three-dimensional (3D) systems that more closely mimic in vivo physiological conditions and allow a better understanding of the signalling between cells. In this work, we compared 2 liquid base 3D methods for the generation of spheroids from C6 rat glioma cells (RGCs) using 30 µL of liquid marble (LM) or the hanging drops (HDs), which contained 2 different cell numbers (5000 or 15,000). After 24 or 48 h of in vitro culture (IVC), the morphology of the spheroids was observed and the behaviour of the two main tubulin PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin (Ac-T), was evaluated by fluorescence and Western blot (WB). RGCs spontaneously formed spherical agglomerates more rapidly in the LM than in the HD system. Cell density influenced the size of the spheroids, which reached a larger size (> of 300 µm Ø), with 15,000 cells compared to 5000 cells (150 µm Ø). Moreover, an increase in Tyr-T and Ac-T was observed in both the HD and LM system from 24 to 48 h, with the highest values shown in the 48 h/LM spheroids of 5000 cells (p < 0.05). In conclusion, by comparing the morphology and microtubular architecture of spheroids from C6 rat glioma cells developed by LM or HD methodology, our findings demonstrate that the use of a fumed silica microbioreactor boosts the induction and maintenance of a high plasticity state in glioma cells. RGCs cultured in LM express levels of tubulin PTMs that can be used to evaluate the efficacy of new anticancer therapies.
Collapse
|
11
|
Lin ES, Song Z, Ong JW, Abid HA, Liew OW, Ng TW. Liquid marble microbioreactor aeration facilitated by on-demand electrolysis. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Nazari H, Heirani-Tabasi A, Ghorbani S, Eyni H, Razavi Bazaz S, Khayati M, Gheidari F, Moradpour K, Kehtari M, Ahmadi Tafti SM, Ahmadi Tafti SH, Ebrahimi Warkiani M. Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends. BIOSENSORS 2021; 12:20. [PMID: 35049648 PMCID: PMC8773546 DOI: 10.3390/bios12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14535, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark;
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45371, Iran;
| | - Fatemeh Gheidari
- Department of Biotechnology, University of Tehran, Tehran 14535, Iran;
| | - Keyvan Moradpour
- Department of Chemical Engineering, Sharif University of Technology, Tehran 14535, Iran;
| | - Mousa Kehtari
- Department of Biology, Faculty of Science, University of Tehran, Tehran 14535, Iran;
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran 14535, Iran;
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
- Institute of Molecular Medicine, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
13
|
3D Liquid Marble Microbioreactors Support In Vitro Maturation of Prepubertal Ovine Oocytes and Affect Expression of Oocyte-Specific Factors. BIOLOGY 2021; 10:biology10111101. [PMID: 34827093 PMCID: PMC8614943 DOI: 10.3390/biology10111101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary Oocyte in vitro maturation has broad potential for generating embryos for research and for application of assisted reproductive technologies, such as in vitro embryo production. In human, the possibility to efficiently mature oocytes in vitro would solve the reproductive problems of patients with special diseases. Nevertheless, the developmental ability of in vitro matured oocytes is currently lower than those matured in vivo. Here, we used young sheep oocytes as model of low-quality gametes to show that a novel liquid marble 3D culture system is suitable to mature in vitro oocytes with reduced potential, improving the rates of in vitro embryo production. The present findings are useful for the optimization of in vitro maturation systems, and to improve the developmental potential of in vitro matured oocytes. Further applications should be considered also in other species, including human, to mature oocytes with intrinsic low quality. Abstract In vitro oocyte maturation (IVM) is a well-established technique. Despite the high IVM rates obtained in most mammalian species, the developmental competence of IVM oocytes is suboptimal. The aim of this work was to evaluate the potential beneficial effects of a liquid marble microbioreactor (LM) as a 3D culture system to mature in vitro prepubertal ovine oocytes, as models of oocytes with intrinsic low competence. Cumulus–oocyte complexes of prepubertal sheep ovaries were in vitro matured in a LM system with hydrophobic fumed-silica-nanoparticles (LM group) or in standard conditions (4W control group). We evaluated: (a) maturation and (b) developmental rates following in vitro fertilization (IVF) and embryo culture; (c) expression of a panel of genes. LM and 4W groups showed similar IVM and IVF rates, while in vitro development to blastocyst stage approached significance (4W: 14.1% vs. LM: 28.3%; p = 0.066). The expression of GDF9, of enzymes involved in DNA methylation reprogramming and of the subcortical maternal complex was affected by the IVM system, while no difference was observed in terms of cell-stress-response. LM microbioreactors provide a suitable microenvironment to induce prepubertal sheep oocyte IVM and should be considered to enhance the developmental competence of oocytes with reduced potential also in other species, including humans.
Collapse
|
14
|
Colombo M, Alkali IM, Prochowska S, Luvoni GC. Fighting Like Cats and Dogs: Challenges in Domestic Carnivore Oocyte Development and Promises of Innovative Culture Systems. Animals (Basel) 2021; 11:2135. [PMID: 34359262 PMCID: PMC8300176 DOI: 10.3390/ani11072135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro embryo production in cats and dogs still presents some challenges, and it needs to be optimized to transfer efficient protocols to related wild, endangered species. While the chemical composition of culture media has been the focus of several studies, the importance of culture substrates for oocyte and embryo culture has often been neglected. Traditional in vitro systems, i.e., two-dimensional cultures, do not resemble the physiological environments where cells develop, and they may cause morphological and functional alterations to oocytes and embryos. More modern three-dimensional and microfluidic culture system better mimic the structure and the stimuli found in in vivo conditions, and they could better support the development of oocytes and embryos in vitro, as well as the maintenance of more physiological behaviors. This review describes the different culture systems tested for domestic carnivore reproductive cells along the years, and it summarizes their effects on cultured cells with the purpose of analyzing innovative options to improve in vitro embryo production outcomes.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Isa Mohammed Alkali
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366 Wrocław, Poland;
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| |
Collapse
|
15
|
Mastrorocco A, Cacopardo L, Lamanna D, Temerario L, Brunetti G, Carluccio A, Robbe D, Dell’Aquila ME. Bioengineering Approaches to Improve In Vitro Performance of Prepubertal Lamb Oocytes. Cells 2021; 10:cells10061458. [PMID: 34200771 PMCID: PMC8230371 DOI: 10.3390/cells10061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus–oocyte complex (COC), by constructing—via bioprinting technologies—alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Daniela Lamanna
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| |
Collapse
|
16
|
Lobel BT, Thomas CA, Ireland PM, Wanless EJ, Webber GB. Liquid marbles, formation and locomotion using external fields and forces. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen NK, Nguyen NT. Liquid marble-based digital microfluidics - fundamentals and applications. LAB ON A CHIP 2021; 21:1199-1216. [PMID: 33656019 DOI: 10.1039/d0lc01290d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lin ES, Song Z, Ong JW, Abid HA, Chung Kim Chung D, Huynh SH, Liew OW, Ng TW. Liquid marble clearance and restoration via gas bubble insertion and bursting. SOFT MATTER 2021; 17:2512-2517. [PMID: 33506846 DOI: 10.1039/d0sm02117b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is hitherto a lack of a simple way to disrupt the coating of particles from liquid marbles in order to introduce additional reagents. Here, a 40 μL liquid marble, created on a superhydrophobic substrate with a 2 mm hole, forms an overhead and overhanging liquid component from which a single gas bubble of up to 28 μL volume could be introduced via the latter. This caused a localized clearing of the particle shell at the apical region of the overhead component because the particles could not be energetically sustained at the thin film region of the bubble. The subsequent dispensation of 5 μL of an external liquid directly onto the shell-free apex of the liquid marble allowed the coalescence of the two liquid bodies, bubble rupture, and restoration of complete particle shell encapsulation. The addition of the liquid via the overhanging component was alternatively found incapable of increasing the size of the overhead drop component. The localized bubble-actuated transient shell clearance at the apex of the liquid marble to allow the addition of reagents shown here portends new vistas for liquid marbles to be used in biomedical applications.
Collapse
Affiliation(s)
- Eric Shen Lin
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Zhixiong Song
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Jian Wern Ong
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Hassan Ali Abid
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - Dwayne Chung Kim Chung
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| | - So Hung Huynh
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia. and Radiometer Pacific Pty Ltd, 1/96 Ricketts Road, Mount Waverley, VIC3149, Australia
| | - Oi Wah Liew
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Centre for Translational Medicine, 14 Medical Drive, 117599, Singapore
| | - Tuck Wah Ng
- Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University Clayton, VIC3800, Australia.
| |
Collapse
|
19
|
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021; 22:E830. [PMID: 33467648 PMCID: PMC7830719 DOI: 10.3390/ijms22020830] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| |
Collapse
|
20
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
21
|
Aalders J, Léger L, Tuerlings T, Ledda S, van Hengel J. Liquid marble technology to create cost-effective 3D cardiospheres as a platform for in vitro drug testing and disease modelling. MethodsX 2020; 7:101065. [PMID: 33005571 PMCID: PMC7509398 DOI: 10.1016/j.mex.2020.101065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023] Open
Abstract
Three-dimensional (3D) cell culturing has several advantages over 2D cultures. 3D cell cultures more accurately mimic the in vivo environment, which is vital to obtain reliable results in disease modelling and toxicity testing. With the introduction of the Yamanaka factors, reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) became available. This iPSC technology provides a scalable source of differentiated cells. iPSCs can be programmed to differentiate into any cell type of the body, including cardiomyocytes. These heart-specific muscle cells, can then serve as a model for therapeutic drug screening or assay development. Current methods to achieve multicellular spheroids by 3D cell cultures, such as hanging drop and spinner flasks are expensive, time-consuming and require specialized materials and training. Hydrophobic powders can be used to create a micro environment for cell cultures, which are termed liquid marbles (LM). In this procedure we describe the first use of the LM technology for 3D culturing in vitro derived human cardiomyocytes which results in the formation of cardiospheres within 24h. The cardiospheres could be used for several in depth and high-throughput analyses.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology research group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Laurens Léger
- Medical Cell Biology research group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Tim Tuerlings
- Medical Cell Biology research group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Jolanda van Hengel
- Medical Cell Biology research group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Abstract
The need for miniaturised reaction systems has led to the development of various microreactor platforms, such as droplet-based microreactors. However, these microreactors possess inherent drawbacks, such as rapid evaporation and difficult handling, that limit their use in practical applications. Liquid marbles are droplets covered with hydrophobic particles and are a potential platform that can overcome the weaknesses of bare droplets. The coating particles completely isolate the interior liquids from the surrounding environment, thus conveniently encapsulating the reactions. Great efforts have been made over the past decade to demonstrate the feasibility of liquid marble-based microreactors for chemical and biological applications. This review systemically summarises state-of-the-art implementations of liquid marbles as microreactors. This paper also discusses the various aspects of liquid marble-based microreactors, such as the formation, manipulation, and future perspectives.
Collapse
|
23
|
Brevini TAL, Pennarossa G, Gandolfi F. A 3D approach to reproduction. Theriogenology 2020; 150:2-7. [PMID: 31973966 DOI: 10.1016/j.theriogenology.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
For over a century, 2D cell culture has been extensively used for all the different research fields. However, this in vitro system does not allow to reproduce the natural structures of the original tissue, causing several changes and, in most cases, the loss of cell-to-cell communications and cell-to-extracellular matrix interactions. Based on this, during the last years, novel 3D platforms, able to mimic the in vivo milieu, are being developed. The advantages of the use of 3D models are: the reduction of the gap between cell culture and physiological environment; imitation of the specific architecture; partially maintenance of the mechanical and biochemical cues of the original tissue. Currently, 3D systems are used in a broad range of studies, including the field of reproduction, where they have been applied to promote maturation of follicles and oocytes and embryo culture. Here, we review 2D and 3D cell culture methods, discussing advantages and limitations of these techniques. We report the fundamental mechanisms involved in cell ability to perceive and respond to mechanical cues and their role in transmitting signals to and between cells and in regulating intracellular signaling pathways. In particular, we focus on the main effectors of the Hippo pathway, Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (TAZ), describing their behavior and function in oocytes and embryos. Lastly, we provide an overall perspective of the most recent 3D technologies developed in the field of reproduction, describing how their use may revolutionize the understanding of cellular behavior and provide novel tools, useful in reproductive technologies and livestock production.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Via Celoria 12, 20133, Milan, Italy
| |
Collapse
|
24
|
Sreejith KR, Gorgannezhad L, Jin J, Ooi CH, Stratton H, Dao DV, Nguyen NT. Liquid marbles as biochemical reactors for the polymerase chain reaction. LAB ON A CHIP 2019; 19:3220-3227. [PMID: 31464317 DOI: 10.1039/c9lc00676a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The polymerase chain reaction (PCR) is a popular and well-established DNA amplification technique. Technological and engineering advancements in the field of microfluidics have fuelled the progress of polymerase chain reaction (PCR) technology in the last three decades. Advances in microfluidics-based PCR technology have significantly reduced the sample volume and thermal cycling time. Further advances led to novel and accurate techniques such as the digital PCR. However, contamination of PCR samples, lack of reusability of the microfluidic PCR platforms, complexity in instrumentation and operation remain as some of the significant drawbacks of conventional microfluidic PCR platforms. Liquid marbles, the recently emerging microfluidic platform, could potentially resolve these drawbacks. This paper reports the first liquid marble based polymerase chain reaction. We demonstrated an experimental setup for the liquid-marble based PCR with a humidity-controlled chamber and an embedded thermal cycler. A concentrated salt solution was used to control the humidity of the PCR chamber which in turn reduces the evaporation rate of the liquid marble. The successful PCR of microbial source tracking markers for faecal contamination was achieved with the system, indicating potential application in water quality monitoring.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia. and School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, 4111 Queensland, Australia
| | - Jing Jin
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, 4111 Queensland, Australia
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| |
Collapse
|
25
|
Janská P, Rychecký O, Zadražil A, Štěpánek F, Čejková J. Liquid Oil Marbles: Increasing the Bioavailability of Poorly Water-Soluble Drugs. J Pharm Sci 2019; 108:2136-2142. [PMID: 30721711 DOI: 10.1016/j.xphs.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Many new therapeutic candidates and active pharmaceutical ingredients (APIs) are poorly soluble in an aqueous environment, resulting in their reduced bioavailability. A promising way of enhancing the release of an API and, thus, its bioavailability seems to be the use of liquid oil marbles (LOMs). An LOM system behaves as a solid form but consists of an oil droplet in which an already dissolved API is encapsulated by a powder. This study aims to optimize the oil/powder combination for the development of such systems. LOMs were successfully prepared for 15 oil/powder combinations, and the following properties were investigated: particle mass fraction, dissolution time, and mechanical stability. Furthermore, the release of API from both LOMs and LOMs encapsulated into gelatine capsules was studied.
Collapse
Affiliation(s)
- Petra Janská
- Department of Chemical Engineering, Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ondřej Rychecký
- Department of Chemical Engineering, Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Aleš Zadražil
- Department of Chemical Engineering, Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jitka Čejková
- Department of Chemical Engineering, Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
26
|
Brevini TAL, Manzoni EFM, Ledda S, Gandolfi F. Use of a Super-hydrophobic Microbioreactor to Generate and Boost Pancreatic Mini-organoids. Methods Mol Biol 2019; 1576:291-299. [PMID: 28702885 DOI: 10.1007/7651_2017_47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell remarkable ability to self-organize and rearrange in functional organoids has been greatly boosted by the recent advances in 3-D culture technologies and materials. This approach can be presently applied to model human organ development and function "in a dish" and to predict drug response in a patient specific fashion.Here we describe a protocol that allows for the derivation of functional pancreatic mini-organoids from skin biopsies. Cells are suspended in a drop of medium and encapsulated with hydrophobic polytetrafluoroethylene (PTFE) powder particles, to form microbioreactors defined as "Liquid Marbles," that stimulate cell coalescence and 3-D aggregation. The PTFE shell ensures an optimal gas exchange between the interior liquid and the surrounding environment. It also makes it possible to scale down experiments and work in smaller volumes and is therefore amenable for higher throughput applications.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, 20133, Italy.
| | - Elena F M Manzoni
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, 20133, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, 07100, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
27
|
Avrămescu RE, Ghica MV, Dinu-Pîrvu C, Udeanu DI, Popa L. Liquid Marbles: From Industrial to Medical Applications. Molecules 2018; 23:E1120. [PMID: 29747389 PMCID: PMC6099950 DOI: 10.3390/molecules23051120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Liquid marbles are versatile structures demonstrating a pseudo-Leidenfrost wetting regime formed by encapsulating microscale volumes of liquid in a particle shell. The liquid core is completely separated from the exterior through air pockets. The external phase consists of hydrophobic particles, in most cases, or hydrophilic ones distributed as aggregates. Their interesting features arise from the double solid-fluid character. Thus, these interesting formations, also known as “dry waters”, have gained attention in surface science. This review paper summarizes a series of proposed formulations, fabrication techniques and properties, in correlation with already discovered and emerging applications. A short general review of the surface properties of powders (contact angle, superficial tension) is proposed, followed by a presentation of liquid marbles’ properties (superficial characteristics, elasticity, self-propulsion etc.). Finally, applications of liquid marbles are discussed, mainly as helpful and yet to be exploited structures in the pharmaceutical and medical field. Innovative pharmaceutical forms (Pickering emulsions) are also means of use taken into account as applications which need further investigation.
Collapse
Affiliation(s)
- Roxana-Elena Avrămescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 020956 Bucharest, Romania.
| | - Mihaela-Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 020956 Bucharest, Romania.
| | - Cristina Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 020956 Bucharest, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 020956 Bucharest, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 020956 Bucharest, Romania.
| |
Collapse
|
28
|
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. Int J Vet Sci Med 2018; 6:S15-S26. [PMID: 30761316 PMCID: PMC6161858 DOI: 10.1016/j.ijvsm.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.
Collapse
Affiliation(s)
- Jie Zhu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt
| | - Chun-Yu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui-Feng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing-Yu Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Feng Dai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
29
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|
30
|
Oliveira NM, Reis RL, Mano JF. The Potential of Liquid Marbles for Biomedical Applications: A Critical Review. Adv Healthc Mater 2017; 6. [PMID: 28795516 DOI: 10.1002/adhm.201700192] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/20/2017] [Indexed: 12/31/2022]
Abstract
Liquid marbles (LM) are freestanding droplets covered by micro/nanoparticles with hydrophobic/hydrophilic properties, which can be manipulated as a soft solid. The phenomenon that generates these soft structures is regarded as a different method to generate a superhydrophobic behavior in the liquid/solid interface without modifying the surface. Several applications for the LM have been reported in very different fields, however the developments for biomedical applications are very recent. At first, the LM properties are reviewed, namely shell structure, LM shape, evaporation, floatability and robustness. The different strategies for LM manipulation are also described, which make use of magnetic, electrostatic and gravitational forces, ultraviolet and infrared radiation, and approaches that induce LM self-propulsion. Then, very distinctive applications for LM in the biomedical field are presented, namely for diagnostic assays, cell culture, drug screening and cryopreservation of mammalian cells. Finally, a critical outlook about the unexplored potential of LM for biomedical applications is presented, suggesting possible advances on this emergent scientific area.
Collapse
Affiliation(s)
- Nuno M. Oliveira
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Zona Industrial da Gandra; 4805-017 Barco GMR Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
31
|
|