1
|
Nicholson CL, Dean M, Attia A, Milne PA, Martins da Silva S. Artificial oocyte activation improves ICSI outcomes following unexplained fertilization abnormalities. Reprod Biomed Online 2024; 49:104327. [PMID: 39241689 DOI: 10.1016/j.rbmo.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 09/09/2024]
Abstract
RESEARCH QUESTION Is artificial oocyte activation (AOA) effective for patients with unexplained low or no fertilization following IVF/intracytoplasmic sperm injection (ICSI)? DESIGN All IVF/ICSI cases resulting in total fertilization failure or fertilization rate ≤25% at Ninewells Assisted Conception Unit, Dundee between January 2014 and December 2021 (n = 231) were reviewed contemporaneously. After exclusion of obvious stimulation, egg, sperm and/or assisted reproductive technology laboratory factors, patients with at least one cycle of IVF/ICSI resulting in apparently unexplained fertilization abnormalities were offered research investigations, including sperm immunocytochemistry for phospholipase C zeta (PLCζ) protein expression. This retrospective case-control cohort study evaluated laboratory and clinical outcomes for 39 couples (15 attended for sperm studies research) that subsequently undertook ICSI-AOA with Ca2+ ionophore. RESULTS Comparing preceding IVF/ICSI and subsequent ICSI-AOA for each patient, the number of eggs collected was similar; however, ICSI-AOA resulted in a significantly improved fertilization rate (57.2% versus 7.1%; P < 0.0001). The uplift for a subset of 10 patients identified with PLCζ deficiency was 66.3% versus 4.6% (P < 0.0001). Overall, ICSI-AOA resulted in a higher number of fresh embryo transfers (94.6% versus 33.3%; P < 0.0001), a significantly higher clinical pregnancy rate (CPR) and live birth rate (LBR; 18.9% versus 2.6%; P = 0.02), a significant increase in cycles with surplus embryos suitable for cryostorage (43.6% versus 0%; P < 0.0001), and increased cumulative CPR (41.0% versus 2.6%; P < 0.0001) and LBR (38.5% versus 2.6%; P < 0.0001). CONCLUSION AOA is a powerful tool that can transform clinical outcomes for couples experiencing apparently unexplained fertilization abnormalities. PLCζ assays have the potential to be valuable diagnostic tools to determine patient selection for ICSI-AOA, and research efforts should continue to focus on their development.
Collapse
Affiliation(s)
- C L Nicholson
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - M Dean
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | - A Attia
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - P A Milne
- Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | - S Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Assisted Conception Unit, Ninewells Hospital, Dundee, UK.
| |
Collapse
|
2
|
Azil S, Mbaye MM, Louanjli N, Ghazi B, Benkhalifa M. Phospholipase C zeta: a hidden face of sperm for oocyte activation and early embryonic development. Obstet Gynecol Sci 2024; 67:467-480. [PMID: 39086217 PMCID: PMC11424188 DOI: 10.5468/ogs.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Oocyte activation is a fundamental event in mammalian fertilization and is initiated by a cascade of calcium signaling and oscillation pathways. Phospholipase C zeta (PLCζ) is involved in modulating cortical granule exocytosis, releasing oocyte meiotic arrest, regulating gene expression, and early embryogenesis. These processes are considered to be initiated and controlled by PLCζ activity via the inositol-1,4,5-triphosphate pathway. The decrease or absence of functional PLCζ due to mutational defects in protein expression or maintenance can impair male fertility. In this literature review, we highlight the significance of PLCζ as a sperm factor involved in oocyte activation, its mechanism of action, the signaling pathway involved, and its close association with oocyte activation. Finally, we discuss the relationship between male infertility and PLCζ deficiency.
Collapse
Affiliation(s)
- Soukaina Azil
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Modou Mamoune Mbaye
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Noureddine Louanjli
- IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
- Labomac IVF Centers and Clinical Laboratory Medicine, Casablanca, Morocco
| | - Bouchra Ghazi
- Department of Faculty of Medicine, Mohammed VI University of Health and Sciences, Casablanca, Morocco
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Mohammed VI Center for Research & Innovation, Casablanca, Morocco
| | - Moncef Benkhalifa
- Reproductive Medicine, Developmental and Reproductive Biology, Regional University Hospital & School of Medicine and Peritox Laboratory, Picardie University Jules Verne, Amiens, France
| |
Collapse
|
3
|
Kashir J, Mistry BV, Rajab MA, BuSaleh L, Abu-Dawud R, Ahmed HA, Alharbi S, Nomikos M, AlHassan S, Coskun S, Assiri AM. The mammalian sperm factor phospholipase C zeta is critical for early embryo division and pregnancy in humans and mice. Hum Reprod 2024; 39:1256-1274. [PMID: 38670547 PMCID: PMC11145019 DOI: 10.1093/humrep/deae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
STUDY QUESTION Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed A Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lujain BuSaleh
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Raed Abu-Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Institute for Molecular Medicine, MSH Medical School, Hamburg, Germany
| | - Hala A Ahmed
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah Alharbi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Saad AlHassan
- Department of Obstetrics and Gynaecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serdar Coskun
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Bekaert B, Boel A, Rybouchkin A, Cosemans G, Declercq S, Chuva de Sousa Lopes SM, Parrington J, Stoop D, Coucke P, Menten B, Heindryckx B. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. J Assist Reprod Genet 2024; 41:1605-1617. [PMID: 38557805 PMCID: PMC11224219 DOI: 10.1007/s10815-024-03095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Unpredictable genetic modifications and chromosomal aberrations following CRISPR/Cas9 administration hamper the efficacy of germline editing. Repair events triggered by double-strand DNA breaks (DSBs) besides non-homologous end joining and repair template-driven homology-directed repair have been insufficiently investigated in mouse. In this work, we are the first to investigate the precise repair mechanisms triggered by parental-specific DSB induction in mouse for paternal mutational correction in the context of an infertility-related mutation. METHODS We aimed to correct a paternal 22-nucleotide deletion in Plcz1, associated with lack of fertilisation in vitro, by administrating CRISPR/Cas9 components during intracytoplasmic injection of Plcz1-null sperm in wild-type oocytes combined with assisted oocyte activation. Through targeted next-generation sequencing, 77 injected embryos and 26 blastomeres from seven injected embryos were investigated. In addition, low-pass whole genome sequencing was successfully performed on 17 injected embryo samples. RESULTS Repair mechanisms induced by two different CRISPR/Cas9 guide RNA (gRNA) designs were investigated. In 13.73% (7/51; gRNA 1) and 19.05% (4/21; gRNA 2) of the targeted embryos, only the wild-type allele was observed, of which the majority (85.71%; 6/7) showed integrity of the targeted chromosome. Remarkably, for both designs, only in one of these embryos (1/7; gRNA 1 and 1/4; gRNA2) could repair template use be detected. This suggests that alternative repair events have occurred. Next, various genetic events within the same embryo were detected after single-cell analysis of four embryos. CONCLUSION Our results suggest the occurrence of mosaicism and complex repair events after CRISPR/Cas9 DSB induction where chromosomal integrity is predominantly contained.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Rybouchkin
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S Declercq
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - J Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - D Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - P Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Parrella A, Medrano L, Aizpurua J, Gómez-Torres MJ. Phospholipase C Zeta in Human Spermatozoa: A Systematic Review on Current Development and Clinical Application. Int J Mol Sci 2024; 25:1344. [PMID: 38279344 PMCID: PMC10815952 DOI: 10.3390/ijms25021344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible for oocyte activation is phospholipase C zeta (PLCζ). Men undergoing intracytoplasmic sperm injection (ICSI) with their spermatozoa lacking PLCζ are incapable of generating Ca2+ oscillation, leading to fertilization failure. The immunofluorescence assay is the most used technique to assess the expression and localization of PLCζ and to diagnose patients with reduced/absent ability to activate the oocytes. In these patients, the use of assisted oocyte activation (AOA) technique can help to yield successful ICSI results and shorten the time of pregnancy. However, the production of a stable PLCζ recombinant protein represents a new powerful therapeutic approach to treating individuals with this condition. We aim to conduct a systematic review focusing on the expression, level, and localization of PLCζ, discussing the novel genetic mutation associated with its impairment. In addition, we highlight the benefits of AOA, looking at new and less invasive methods to diagnose and treat cases with PLCζ dysfunction.
Collapse
Affiliation(s)
- Alessandra Parrella
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
| | - Llanos Medrano
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
| | - Jon Aizpurua
- IVF Life, Reproductive Medicine, 03540 Alicante, Spain; (A.P.); (L.M.); (J.A.)
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
| | - María José Gómez-Torres
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain
| |
Collapse
|
6
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
7
|
Allahveisi A, Yousefian E. Assessment of Expression Levels and Localization Patterns of Phospholipase C zeta in Different Grades of HOST in Human Sperm. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 18:26-31. [PMID: 38041456 PMCID: PMC10692739 DOI: 10.22074/ijfs.2023.1973614.1396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/10/2023] [Accepted: 04/29/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Phospholipase C zeta (PLC-ζ) deficiency in sperm can underlie oocyte activation failure after intracytoplasmic sperm injection (ICSI). The aim of this study was to determine PLC-ζ expression and location in individual spermatozoa in each host score so that a hypo-osmotic swelling test (HOST) may be used to help routine sperm selection for ICSI. MATERIALS AND METHODS In this experimental study, fresh semen samples were randomly obtained from 30 men who were referred to the Andrology Unit of the Infertility Center. Samples were processed by density gradient centrifugation (DGC) and exposed to hypotonic conditions. Seven different tail patterns, classified from 'a' to 'g' can be detected according to World Health Organization (WHO) criteria. Then, the PLC-ζ protein localization pattern was assessed by quantitative Immunofluorescence in individual sperm Host grades. Moreover, the sperm content of PLC-ζ protein was evaluated by flow cytometry correlated with semen analysis parameters. RESULTS In the present study, quantitive immunofluorescence analysis indicated that sperm from different host grades exhibited seven localization patterns of PLC-ζ of acrosomal (A); equatorial (EQ), and postacrosomal (PA) patterns. A+EQ=acrosomal and equatorial, A+PA=acrosomal and post-acrosomal, EQ+PA=equatorial and post-crosomal, and A+EQ+PA. The sperm from HOST grade 'd' exhibited significantly higher PLC-ζ (A+PA) and (A+EQ+PA) staining compared to sperm from other grades (P=0.006). The sperm from grade 'd' exhibited higher PLC-ζ (EQ+PA) compared with other grades (P=0.001). However, grade 'd' was not significantly different from 'c' (P=0.087). Analysis of the combined results confirmed that there was a clear reduction in PLC-ζ immunofluorescence in Host grades 'a', 'f' and 'g' sperms. CONCLUSION Our data suggest that HOST may represent a useful diagnostic tool for the selection of sperms exhibiting a higher level of PLC-ζ expression.
Collapse
Affiliation(s)
- Azra Allahveisi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sannandaj, Iran
| | - Elham Yousefian
- Department of Midwifery, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
8
|
Mirsanei JS, Gholipour H, Zandieh Z, Jahromi MG, Masroor MJ, Mehdizadeh M, Amjadi F. Transition nuclear protein 1 as a novel biomarker in patients with fertilization failure. Clin Exp Reprod Med 2023; 50:185-191. [PMID: 37643832 PMCID: PMC10477415 DOI: 10.5653/cerm.2023.05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Although intracytoplasmic sperm injection (ICSI) is a way to deal with in vitro fertilization failure, 3% of couples still experience repeated fertilization failure after attempted ICSI, despite having sperm within normal parameters. These patients are a challenging group whose sperm cannot fertilize the egg during ICSI. Unfortunately, no test can predict the risk of fertilization failure. Phospholipase C zeta (PLCζ) and transition nuclear proteins (TNPs) are essential factors for chromatin packaging during sperm maturation. This study aimed to assess PLCζ1 and TNP1 expression in the sperm of patients with fertilization failure and the correlations among the DNA fragmentation index, PLCζ1 and TNP1 gene and protein expression, and the risk of fertilization failure. METHODS In this study, 12 infertile couples with low fertilization rates (<25%) and complete failure of fertilization in their prior ICSI cycles despite normal sperm parameters were chosen as the case group. Fifteen individuals who underwent ICSI for the first time served as the control group. After sperm analysis and DNA fragmentation assays, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were performed to compare the gene and protein expression of PLCζ and TNP1 in both groups. RESULTS DNA fragmentation was significantly higher in the fertilization failure group. The qRT-PCR and Western blot results demonstrated significantly lower PLCζ and TNP1 gene and protein expression in these patients than in controls. CONCLUSION The present study showed that fertilization failure in normozoospermic men was probably due to deficient DNA packaging and expression of TNP1.
Collapse
Affiliation(s)
- Jamileh Sadat Mirsanei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadis Gholipour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Golestan Jahromi
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mojgan Javedani Masroor
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abdulsamad HMR, Murtaza ZF, AlMuhairi HM, Bafleh WS, AlMansoori SA, AlQubaisi SA, Hamdan H, Kashir J. The Therapeutic and Diagnostic Potential of Phospholipase C Zeta, Oocyte Activation, and Calcium in Treating Human Infertility. Pharmaceuticals (Basel) 2023; 16:441. [PMID: 36986540 PMCID: PMC10056371 DOI: 10.3390/ph16030441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Oocyte activation, a fundamental event during mammalian fertilisation, is initiated by concerted intracellular patterns of calcium (Ca2+) release, termed Ca2+ oscillations, predominantly driven by testis-specific phospholipase C zeta (PLCζ). Ca2+ exerts a pivotal role in not just regulating oocyte activation and driving fertilisation, but also in influencing the quality of embryogenesis. In humans, a failure of Ca2+ release, or defects in related mechanisms, have been reported to result in infertility. Furthermore, mutations in the PLCζ gene and abnormalities in sperm PLCζ protein and RNA, have been strongly associated with forms of male infertility where oocyte activation is deficient. Concurrently, specific patterns and profiles of PLCζ in human sperm have been linked to parameters of semen quality, suggesting the potential for PLCζ as a powerful target for both therapeutics and diagnostics of human fertility. However, further to PLCζ and given the strong role played by Ca2+ in fertilisation, targets down- and up-stream of this process may also present a significantly similar level of promise. Herein, we systematically summarise recent advancements and controversies in the field to update expanding clinical associations between Ca2+-release, PLCζ, oocyte activation and human fertility. We discuss how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic avenues presented by oocyte activation for the diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Zoha F. Murtaza
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hessa M. AlMuhairi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Salma A. AlMansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shaikha A. AlQubaisi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| |
Collapse
|
10
|
Kashir J, Mistry BV, BuSaleh L, Nomikos M, Almuqayyil S, Abu-Dawud R, AlYacoub N, Hamdan H, AlHassan S, Lai FA, Assiri AM, Coskun S. Antigen Unmasking Is Required to Clinically Assess Levels and Localisation Patterns of Phospholipase C Zeta in Human Sperm. Pharmaceuticals (Basel) 2023; 16:198. [PMID: 37259347 PMCID: PMC9962097 DOI: 10.3390/ph16020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/10/2024] Open
Abstract
Mammalian oocyte activation is initiated by intracellular calcium (Ca2+) oscillations, driven by the testis-specific phospholipase C zeta (PLCζ). Sperm PLCζ analysis represents a diagnostic measure of sperm fertilisation capacity. The application of antigen unmasking/retrieval (AUM) generally enhanced the visualisation efficacy of PLCζ in mammalian sperm, but differentially affected the PLCζ profiles in sperm from different human males. It is unclear whether AUM affects the diagnosis of PLCζ in human sperm. Herein, we examined whether the application of AUM affected the correlation of PLCζ profiles with sperm parameters and fertilisation capacity. PLCζ fluorescence levels and localisation patterns were examined within the sperm of males undergoing fertility treatment (55 patients aged 29-53) using immunofluorescence in the absence/presence of AUM. The changes in PLCζ profiles following AUM were examined in relation to sperm health and fertilisation outcome. AUM enhanced the observable levels and specific localisation patterns of PLCζ in relation to both optimal sperm parameters and fertilisation outcome, without which significant differences were not observed. The extent of the change in levels and localisation ratios of PLCζ was also affected to a larger degree in terms of the optimal parameters of sperm fertility and fertilisation capacity by AUM. Collectively, AUM was essential to accurately assesses PLCζ in human sperm in both scientific and clinical contexts.
Collapse
Affiliation(s)
- Junaid Kashir
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Bhavesh V. Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Lujain BuSaleh
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Sarah Almuqayyil
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Raed Abu-Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Nadya AlYacoub
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saad AlHassan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdullah M. Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Serdar Coskun
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| |
Collapse
|
11
|
Jones C, Meng X, Coward K. SPERM FACTORS AND EGG ACTIVATION: Phospholipase C zeta (PLCZ1) and the clinical diagnosis of oocyte activation deficiency. Reproduction 2022; 164:F53-F66. [PMID: 35312629 PMCID: PMC9175550 DOI: 10.1530/rep-21-0458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Oocyte activation deficiency (OAD) remains the predominant cause of total/low fertilization rate in assisted reproductive technology. Phospholipase C zeta (PLCZ1) is the dominant sperm-specific factor responsible for triggering oocyte activation in mammals. OAD has been linked to numerous PLCZ1 abnormalities in patients experiencing failed in vitro fertilization or intracytoplasmic sperm injection cycles. While significant efforts have enhanced our understanding of the clinical relevance of PLCZ1, and the potential effects of genetic variants upon functionality, our ability to apply PLCZ1 in a diagnostic or therapeutic role remains limited. Artificial oocyte activation is the only option for patients experiencing OAD but lacks a reliable diagnostic approach. Immunofluorescence analysis has revealed that the levels and localization patterns of PLCZ1 within sperm can help us to indirectly diagnose a patient's ability to induce oocyte activation. Screening of the gene encoding PLCZ1 protein is also critical if we are to fully determine the extent to which genetic factors might play a role in the aberrant expression and/or localization patterns observed in infertile patients. Collectively, these findings highlight the clinical potential of PLCZ1, both as a prognostic indicator of OAD and eventually as a therapeutic agent. In this review, we focus on our understanding of the association between OAD and PLCZ1 by discussing the localization and expression of this key protein in human sperm, the potential genetic causes of OAD, and the diagnostic tools that are currently available to us to identify PLCZ1 deficiency and select patients that would benefit from targeted therapy.
Collapse
Affiliation(s)
- C Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - X Meng
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - K Coward
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
12
|
Aras-Tosun D, Cakar Z, Can A, Ozkavukcu S, Kaplanoglu I, Cinar O. Phospholipase C-zeta levels are not correlated with fertilisation rates in infertile couples. Andrologia 2021; 54:e14269. [PMID: 34651330 DOI: 10.1111/and.14269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
In mammals, 'oocyte activation' is triggered by certain proteins, one of which is phospholipase C-zeta. Recent evidence suggests that low expression of phospholipase C-zeta might be associated with male infertility, while a limited number of studies claimed the opposite. This study was designed to test whether quantity of phospholipase C-zeta and in vitro fertilisation rates are correlated or not, assessed by flow cytometry. Semen samples from 43 infertile couples were analysed for the percentage and mean fluorescent intensity (MFI) of phospholipase C-zeta protein. Results were confirmed by immunofluorescent labelling. Patients with a fertilisation rate of 40% or lower were involved in the low fertilisation group, while the high fertilization group consisted of patients with a fertilisation rate of 60% and higher. Quantitative analyses by flow cytometry showed no significant difference among the low fertilisation and high fertilisation groups when phospholipase C-zeta ratio or MFI was considered. No correlation was found between pregnancy rates and phospholipase C-zeta quantity. None of the total fertilisation failure cases were lack of phospholipase C-zeta. In fact, fertilisation was possible even when phospholipase C-zeta levels were very low. Thus, we concluded that phospholipase C-zeta quantity cannot be considered as a diagnostic tool for male infertility.
Collapse
Affiliation(s)
- Duru Aras-Tosun
- Department of Histology and Embryology, Ankara University School of Dentistry, Ankara, Turkey
| | - Zeynep Cakar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Alp Can
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Sinan Ozkavukcu
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.,Centre for Assisted Reproduction, Ankara University School of Medicine, Ankara, Turkey
| | - Iskender Kaplanoglu
- Centre for Assisted Reproductive Medicine, TCSB Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, Ankara, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.,Centre for Assisted Reproduction, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Meng X, Melo P, Jones C, Ross C, Mounce G, Turner K, Child T, Coward K. Use of phospholipase C zeta analysis to identify candidates for artificial oocyte activation: a case series of clinical pregnancies and a proposed algorithm for patient management. Fertil Steril 2021; 114:163-174. [PMID: 32622408 DOI: 10.1016/j.fertnstert.2020.02.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the applicability of phospholipase C zeta (PLCζ) analysis in assisting the clinical decision-making process when considering artificial oocyte activation (AOA) for infertile males in assisted reproductive technology. DESIGN Fifty-six males (43 infertile/13 fertile) were screened using our PLCζ assay. SETTING Fertility unit/university laboratory. PATIENT(S) Infertile males with abnormal sperm morphology or total fertilization failure, low fertilization rate (<50%), or repeated fertilization failure in assisted reproductive technology. INTERVENTION(S) We analyzed PLCζ levels in sperm from fertile and infertile males. Eligible patients subsequently underwent intracytoplasmic sperm injection (ICSI)/artificial oocyte activation (AOA) with calcimycin (GM508). MAIN OUTCOME MEASURE(S) PLCζ localization and level and the proportion of sperm expressing PLCζ. Thresholds of PLCζ deficiency, fertilization rates, pregnancy rates, and live birth rates of AOA and non-AOA cycles. RESULT(S) Compared with 13 fertile controls, 34 of the 43 infertile males had significantly lower levels of PLCζ and/or a significantly lower proportion of sperm exhibiting PLCζ. Of these 34 patients, 15 showed a significant PLCζ reduction in both parameters, which we termed "PLCζ deficiency." Five PLCζ-deficient patients opted for AOA; all five achieved fertilization, and four achieved clinical pregnancies and live births. The fertilization rate improved significantly from 18.6% (ICSI) to 56.8% (ICSI/AOA). The clinical pregnancy rate and live birth rate with AOA were both 40% per initiated cycle. Youden index analysis revealed that the cutoffs below which infertile males were likely to benefit from AOA were 71% for the proportion of sperm expressing PLCζ and 15.57 arbitrary units for mean PLCζ level. CONCLUSION(S) PLCζ analysis is a useful diagnostic tool to determine patient eligibility for subsequent AOA treatment.
Collapse
Affiliation(s)
- Xin Meng
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Pedro Melo
- The Women's Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | | | - Ginny Mounce
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Karen Turner
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Torra-Massana M, Jodar M, Barragán M, Soler-Ventura A, Delgado-Dueñas D, Rodríguez A, Oliva R, Vassena R. Altered mitochondrial function in spermatozoa from patients with repetitive fertilization failure after ICSI revealed by proteomics. Andrology 2021; 9:1192-1204. [PMID: 33615715 DOI: 10.1111/andr.12991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Unexplained fertilization failure (FF), occurring in 1-3% of intracytoplasmic sperm injection (ICSI) cycles, results in both psychological and financial burden for the patients. However, the molecular causes behind FF remain largely unknown. Mass spectrometry is a powerful technique to identify and quantify proteins across samples; however, no study so far has used it to dissect the proteomic signature of spermatozoa with FF after ICSI. OBJECTIVE To investigate whether sperm samples from patients suffering repetitive FF after ICSI display alterations in their protein content. MATERIAL AND METHODS Seventeen infertile men were included: 5 patients presented FF in ≥3 consecutive ICSI cycles, while 12 patients had a fertilization rate >75% (controls). Individual sperm samples were subjected to 2D-LC-MS/MS. Both conventional and novel statistical approaches were used to identify differentially abundant proteins. Additionally, analysis of mitochondrial and proteasomal abundance and activity were performed, using Western blot, FACS analysis of JC-1 staining and AMC-peptide fluorometric assay. RESULTS Four proteins presented lower abundance (FMR1NB, FAM209B, RAB2B, and PSMA1) in the FF group compared to controls, while five mitochondrial proteins presented higher abundance in FF (DLAT, ATP5H, SLC25A3, SLC25A6, and FH) (p < 0.05). The altered abundance of mitochondrial DLAT and proteasomal PSMA1 was corroborated by Western blot. Of relevance, novel stable-protein pair analysis identified 73 correlations comprising 28 proteins within controls, while different mitochondrial proteins (ie, PDHA2, PHB2, and ATP5F1D) lost >50% of these correlations in specific FF samples pointing out specific mitochondrial deregulations. DISCUSSION This is the first proteomic analysis of spermatozoa from patients who resulted in fertilization failure after ICSI. The altered proteins, most of them related to mitochondrial function, could help to identify diagnostic/prognostic markers of fertilization failure and could further dissect the molecular paternal contribution to reach successful fertilization. CONCLUSION Sperm samples from patients with FF after ICSI present altered abundance of different proteins, including mainly mitochondrial proteins.
Collapse
Affiliation(s)
- Marc Torra-Massana
- EUGIN, Barcelona, Spain.,Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Ada Soler-Ventura
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | - David Delgado-Dueñas
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | |
Collapse
|
15
|
Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. J Clin Med 2020; 9:jcm9123899. [PMID: 33271815 PMCID: PMC7761017 DOI: 10.3390/jcm9123899] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF.
Collapse
|
16
|
Torra-Massana M, Cornet-Bartolomé D, Barragán M, Durban M, Ferrer-Vaquer A, Zambelli F, Rodriguez A, Oliva R, Vassena R. Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod 2020; 34:1494-1504. [PMID: 31347677 DOI: 10.1093/humrep/dez094] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are phospholipase C zeta 1 (PLCZ1) mutations associated with fertilization failure (FF) after ICSI? SUMMARY ANSWER New mutations in the PLCZ1 sequence are associated with FFs after ICSI. WHAT IS KNOWN ALREADY FF occurs in 1-3% of ICSI cycles, mainly due to oocyte activation failure (OAF). The sperm PLCζ/PLCZ1 protein hydrolyzes phosphatidylinositol (4, 5)-bisphosphate in the oocyte, leading to intracellular calcium release and oocyte activation. To date, few PLCZ1 point mutations causing decreased protein levels or activity have been linked to FF. However, functional alterations of PLCζ/PLCZ1 in response to both described and novel mutations have not been investigated. STUDY DESIGN, SIZE, DURATION We performed a study including 37 patients presenting total or partial FF (fertilization rate (FR), ≤25%) after ICSI occurring between 2014 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were divided into two groups based on oocyte evaluation 19 h post ICSI: FF due to a defect in oocyte activation (OAF, n = 22) and FF due to other causes ('no-OAF', n = 15). Samples from 13 men with good fertilization (FR, >50%) were used as controls. PLCζ/PLCZ1 protein localization and levels in sperm were evaluated by immunofluorescence and western blot, respectively. Sanger sequencing on genomic DNA was used to identify PLCZ1 mutations in exonic regions. The effect of the mutations on protein functionality was predicted in silico using the MODICT algorithm. Functional assays were performed by cRNA injection of wild-type and mutated forms of PLCZ1 into human in vitro matured metaphase II oocytes, and fertilization outcomes (second polar body extrusion, pronucleus appearance) scored 19 h after injection. MAIN RESULTS AND THE ROLE OF CHANCE In the OAF group, 12 (54.6%) patients carried at least one mutation in the PLCZ1 coding sequence, one patient out of 15 (6.7%) in the no-OAF group (P < 0.05) and none of the 13 controls (P < 0.05). A total of six different mutations were identified. Five of them were single-nucleotide missense mutations: p.I120M, located at the end of the EF-hand domain; p.R197H, p.L224P and p.H233L, located at the X catalytic domain; and p.S500 L, located at the C2 domain. The sixth mutation, a frameshift variant (p.V326K fs*25), generates a truncated protein at the X-Y linker region. In silico analysis with MODICT predicted all the mutations except p.I120M to be potentially deleterious for PLCζ/PLCZ1 activity. After PLCZ1 cRNA injection, a significant decrease in the percentage of activated oocytes was observed for three mutations (p.R197H, p.H233L and p.V326K fs*25), indicating a deleterious effect on enzymatic activity. PLCZ1 protein localization and expression levels in sperm were similar across groups. FRs were restored (to >60%) in patients carrying PLCZ1 mutations (n = 10) after assisted oocyte activation (AOA), with seven patients achieving pregnancy and live birth. LIMITATIONS, REASONS FOR CAUTION Caution should be exerted when comparing the cRNA injection results with fertilization outcomes after ICSI, especially in patients presenting mutations in heterozygosis. WIDER IMPLICATIONS OF THE FINDINGS PLCZ1 mutations were found in high frequency in patients presenting OAF. Functional analysis of three mutations in human oocytes confirms alteration of PLCζ/PLCZ1 activity and their likely involvement in impaired oocyte activation. Our results suggest that PLCZ1 gene sequencing could be useful as a tool for the diagnosis and counseling of couples presenting FF after ICSI due to OAF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clínica EUGIN, by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia (GENCAT 2015 DI 049 to M. T.-M. and GENCAT 2015 DI 048 to D. C.-B.) and by the Torres Quevedo Program from the Spanish Ministry of Economy and Competitiveness to A. F.-V. No competing interest declared.
Collapse
Affiliation(s)
- Marc Torra-Massana
- Clínica EUGIN, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | - Rafael Oliva
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
17
|
Xin A, Qu R, Chen G, Zhang L, Chen J, Tao C, Fu J, Tang J, Ru Y, Chen Y, Peng X, Shi H, Zhang F, Sun X. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor inducing early embryonic arrest. SCIENCE ADVANCES 2020; 6:eaaz4796. [PMID: 32923619 PMCID: PMC7455188 DOI: 10.1126/sciadv.aaz4796] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Early embryonic arrest is a challenge for in vitro fertilization (IVF). No genetic factors were previously revealed in the sperm-derived arrest of embryonic development. Here, we reported two infertile brothers presenting normal in conventional semen analysis, but both couples had no embryos for transfer after several IVF and intracytoplasmic sperm injection (ICSI). Whole-exome sequencing identified a homozygous missense mutation of ACTL7A in both brothers. This mutation is deleterious and causes sperm acrosomal ultrastructural defects. The Actl7a knock-in mouse model was generated, and male mutated mice showed sperm acrosomal defects, which were completely consistent with the observations in patients. Furthermore, the sperm from ACTL7A/Actl7a-mutated men and mice showed reduced expression and abnormal localization of PLCζ as a potential cause of embryonic arrest and failure of fertilization. Artificial oocyte activation could successfully overcome the Actl7a-mutated sperm-derived infertility, which is meaningful in the future practice of IVF/ICSI for the ACTL7A-associated male infertility.
Collapse
Affiliation(s)
- Aijie Xin
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Ronggui Qu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Guowu Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Junling Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Chengqiu Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianan Tang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Yanfei Ru
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiandong Peng
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Endocrinology and Reproductive Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020; 10:200118. [PMID: 32673518 PMCID: PMC7574550 DOI: 10.1098/rsob.200118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) signals initiate egg activation across the animal kingdom and in at least some plants. These signals are crucial for the success of development and, in the case of mammals, health of the offspring. The mechanisms associated with fertilization that trigger these signals and the molecules that regulate their characteristic patterns vary widely. With few exceptions, a major contributor to fertilization-induced elevation in cytoplasmic Ca2+ is release from endoplasmic reticulum stores through the IP3 receptor. In some cases, Ca2+ influx from the extracellular space and/or release from alternative intracellular stores contribute to the rise in cytoplasmic Ca2+. Following the Ca2+ rise, the reuptake of Ca2+ into intracellular stores or efflux of Ca2+ out of the egg drive the return of cytoplasmic Ca2+ back to baseline levels. The molecular mediators of these Ca2+ fluxes in different organisms include Ca2+ release channels, uptake channels, exchangers and pumps. The functions of these mediators are regulated by their particular activating mechanisms but also by alterations in their expression and spatial organization. We discuss here the molecular basis for modulation of Ca2+ signalling at fertilization, highlighting differences across several animal phyla, and we mention key areas where questions remain.
Collapse
Affiliation(s)
- Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Kashir J, Mistry BV, BuSaleh L, Abu-Dawas R, Nomikos M, Ajlan A, Abu-Dawud R, AlYacoub N, AlHassan S, Lai FA, Assiri AM, Coskun S. Phospholipase C zeta profiles are indicative of optimal sperm parameters and fertilisation success in patients undergoing fertility treatment. Andrology 2020; 8:1143-1159. [PMID: 32298520 DOI: 10.1111/andr.12796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Oocyte activation is driven by intracellular calcium (Ca2+ ) oscillations induced by sperm-specific PLCζ, abrogation of which causes oocyte activation deficiency in humans. Clinical PLCζ investigations have been limited to severe male infertility conditions, while PLCζ levels and localisation patterns have yet to be associated with general sperm viability. MATERIALS AND METHODS PLCζ profiles were examined within a general population of males attending a fertility clinic (65 patients; aged 29-53), examining PLCζ throughout various fractions of sperm viability. Male recruitment criteria required a minimum sperm count of 5 × 106 spermatozoa/mL, while all female patients included in this study yielded at least five oocytes for treatment. Sperm count, motility and semen volume were recorded according to standard WHO reference guidelines and correlated with PLCζ profiles examined via immunoblotting and immunofluorescence. Appropriate fertility treatments were performed following routine clinical standard operating protocols, and fertilisation success determined by successful observation of second polar body extrusion. RESULTS AND DISCUSSION Four distinct PLCζ patterns were observed at the equatorial, acrosomal + equatorial regions of the sperm head, alongside a dispersed pattern, and a population of spermatozoa without any PLCζ. Acrosomal + equatorial PLCζ correlated most to sperm health, while dispersed PLCζ correlated to decreased sperm viability. Total levels of PLCζ exhibited significant correlations with sperm parameters. PLCζ variance corresponded to reduced sperm health, potentially underlying cases of male sub-fertility and increasing male age. Finally, significantly higher levels of PLCζ were exhibited by cases of fertilisation success, alongside higher proportions of Ac + Eq, and lower levels of dispersed PLCζ. CONCLUSIONS PLCζ potentially represents a biomarker of sperm health, and fertilisation capacity in general cases of patients seeking fertility treatment, and not just cases of repeated fertilisation. Further focused investigations are required with larger cohorts to examine the full clinical potential of PLCζ.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,School of Biosciences, Cardiff University, Cardiff, UK.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Lujain BuSaleh
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Reema Abu-Dawas
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed Ajlan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Raed Abu-Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nadya AlYacoub
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Saad AlHassan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Abdullah M Assiri
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
A homozygous nonsense mutation of PLCZ1 cause male infertility with oocyte activation deficiency. J Assist Reprod Genet 2020; 37:821-828. [PMID: 32146562 DOI: 10.1007/s10815-020-01719-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To identify the pathogenic PLCZ1 mutation involved in male infertility and fertilization failure. METHODS All coding regions of PLCZ1 were sequenced by Sanger sequencing. The expression and localization of PLCZ1 in sperm was determined by Western blotting and immunofluorescence. To promote the fertilization rate, the infertile man with PLCZ1 mutation was treated with intracytoplasmic sperm injection (ICSI) accompanied by assisted oocyte activation (AOA) in the following cycle. RESULT We identified a novel homozygous PLCZ1 nonsense mutation, c.588C>A (p.Cys196Ter) in an infertile man from a consanguineous family. No PLCZ1 protein was detected by Western blotting and immunofluorescence in ejaculated sperm from the patient. The treatment of ICSI + AOA avoided fertilization failure but did not result in pregnancy in the following cycle. CONCLUSION Our study confirmed the essential role of PLCZ1 in fertilization and male fertility, which indicated the potential prognostic value of testing for PLCZ1 mutations in primary infertile men with sperm-derived fertilization failure.
Collapse
|
22
|
Saleh A, Kashir J, Thanassoulas A, Safieh-Garabedian B, Lai FA, Nomikos M. Essential Role of Sperm-Specific PLC-Zeta in Egg Activation and Male Factor Infertility: An Update. Front Cell Dev Biol 2020; 8:28. [PMID: 32064262 PMCID: PMC7000359 DOI: 10.3389/fcell.2020.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus responsible for generating calcium (Ca2+) oscillations that induce egg activation and early embryonic development during mammalian fertilization. In the mammalian testis, PLCζ expression is detected at spermiogenesis following elongated spermatid differentiation. Sperm-delivered PLCζ induces Ca2+ release via the inositol 1,4,5-trisphosphate (InsP3) signaling pathway. PLCζ is the smallest known mammalian PLC isoform identified to date, with the simplest domain organization. However, the distinctive biochemical properties of PLCζ compared with other PLC isoforms contribute to its unique potency in stimulating cytosolic Ca2+ oscillations within mammalian eggs. Moreover, studies describing PLCζ “knockout” mouse phenotypes confirm the supreme importance of PLCζ at egg activation and monospermic fertilization in mice. Importantly, a number of clinical reports have highlighted the crucial importance of PLCζ in human fertilization by associating PLCζ deficiencies with certain forms of male factor infertility. Herein, we give an update on recent advances that have refined our understanding of how sperm PLCζ triggers Ca2 + oscillations and egg activation in mammals, while also discussing the nature of a potential “alternative” sperm factor. We summarise PLCζ localization in mammalian sperm, and the direct links observed between defective PLCζ protein in sperm and documented cases of male infertility. Finally, we postulate how this sperm protein can be used as a potential diagnostic marker, and also as a powerful therapeutic agent for treatment of certain types of male infertility due to egg activation failure or even in more general cases of male subfertility.
Collapse
Affiliation(s)
- Alaaeldin Saleh
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - F Anthony Lai
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Michail Nomikos
- Member of QU Health, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Bonte D, Thys V, De Sutter P, Boel A, Leybaert L, Heindryckx B. Vitrification negatively affects the Ca 2+-releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online 2019; 40:13-25. [PMID: 31740224 DOI: 10.1016/j.rbmo.2019.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
RESEARCH QUESTION To what extent does vitrification affect the Ca2+-releasing and activation potential of mouse oocytes, which are commonly used to determine the oocyte activation potential of human spermatozoa? DESIGN The effect of mouse oocyte vitrification on Ca2+ dynamics and developmental competence after oocyte activation was assessed and compared with fresh mouse oocytes. Moreover, the Ca2+ store content of the endoplasmic reticulum was determined at different time points during the vitrification-warming procedure. Finally, the Ca2+ pattern induced by cryoprotectant exposure was determined. RESULTS After human sperm injection into mouse oocytes, Ca2+ dynamics but not fertilization rates were significantly altered by vitrification warming (P < 0.05). Ca2+ dynamics in response to SrCl2 or ionomycin were also altered by oocyte vitrification. In contrast, activation and blastocyst rates after SrCl2 exposure were not affected (P > 0.05), whereas activation rates after ionomycin exposure were significantly lower in vitrified-warmed oocytes (P < 0.05); blastocyst rates were not affected (P > 0.05). Cryoprotectant exposure was associated with a strong drop in endoplasmic reticulum Ca2+ store content. Oocytes rapidly recovered during warming and recovery in Ca2+-containing media; a threshold area under the curve of Ca2+ dynamics to obtain activation rates above 90% was determined. CONCLUSIONS Vitrified-warmed mouse oocytes display reduced Ca2+-releasing potential upon oocyte activation, caused by cryoprotectant exposure. With adapted classification criteria, these oocytes could be used for diagnosing oocyte activation deficiencies in patients. Evaluating the Ca2+-signalling machinery in vitrified-warmed human oocytes is required.
Collapse
Affiliation(s)
- Davina Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium.
| | - Vanessa Thys
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Luc Leybaert
- Physiology group, Department of Basic and Applied Medical Sciences, Ghent University, C. Heymanslaagn 10, GhentGhent 9000, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| |
Collapse
|
24
|
Atabay E, Fajardo Z, Tadeo R, Atabay E, Venturina E, Mingala C, Fissore R. Phospholipase C zeta 1 mRNA as a marker of oocyte-activation and fertilization potential of water buffalo (Bubalus bubalis) semen. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Bonte D, Ferrer-Buitrago M, Dhaenens L, Popovic M, Thys V, De Croo I, De Gheselle S, Steyaert N, Boel A, Vanden Meerschaut F, De Sutter P, Heindryckx B. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril 2019; 112:266-274. [PMID: 31133387 DOI: 10.1016/j.fertnstert.2019.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/07/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the extent to which assisted oocyte activation (AOA) improves clinical outcomes in patients diagnosed with oocyte activation deficiencies (OADs). DESIGN Retrospective cohort study comparing AOA cycles and previous intracytoplasmic sperm injection (ICSI) cycles in couples experiencing low or total failed fertilization after ICSI. Importantly, the sperm-related oocyte-activating capacity was examined in all patients before AOA with the use of the mouse oocyte activation test (MOAT). SETTING Infertility center at a university hospital. PATIENT(S) A total of 122 couples with a history of low or total failed fertilization after ICSI. INTERVENTION(S) ICSI, MOAT, AOA, and embryo transfer. MAIN OUTCOME MEASURE(S) Fertilization, pregnancy, and live birth rates. RESULT(S) MOAT revealed 19 patients with a sperm-related OAD (MOAT group 1), 56 patients with a diminished sperm-related oocyte-activating capacity (MOAT group 2), and 47 patients with a suspected oocyte-related OAD (MOAT group 3). AOA (191 cycles) significantly improved fertilization, pregnancy, and live birth rates in all MOAT groups compared with previous ICSI attempts (243 cycles). Fertilization rates after AOA were significantly different among MOAT groups 1 (70.1%), 2 (63.0%), and 3 (57.3%). Between MOAT group 1 and 3, significant differences in pregnancy (49.0% vs. 29.4%) and live birth (41.2% vs. 22.1%) rates were observed. In total, 225 embryo transfers resulted in 60 healthy live births following AOA. CONCLUSION(S) Patients undergoing diagnostic testing before AOA show a significant improvement in clinical outcomes compared with previous cycles. Our findings highlight that AOA should be reserved for patients with clear OADs.
Collapse
Affiliation(s)
- Davina Bonte
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.
| | - Minerva Ferrer-Buitrago
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lien Dhaenens
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mina Popovic
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Vanessa Thys
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse De Croo
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefanie De Gheselle
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Nathalie Steyaert
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Frauke Vanden Meerschaut
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
26
|
Nazarian H, Azad N, Nazari L, Piryaei A, Heidari MH, Masteri-Farahani R, Karimi M, Ghaffari-Novin M. Effect of Artificial Oocyte Activation on Intra-Cytoplasmic Sperm Injection Outcomes in Patients with Lower Percentage of Sperm Containing Phospholipase Cζ: A Randomized Clinical Trial. J Reprod Infertil 2019; 20:3-9. [PMID: 30859076 PMCID: PMC6386797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Artificial oocyte activation (AOA) is a specialized method in assisted reproductive technique (ART). According to increasing concern about using AOA, it is necessary to evaluate sperm-borne oocyte activating factors (SOAFs) including phospholipase C zeta (PLCζ). In this study, PLCζ before AOA was evaluated first and then the impact of AOA on pre-implantation embryo development was investigated. METHODS This prospective clinical trial enrolled couples subjected to ICSI. By evaluating PLCζ, semen samples were categorized into two groups; I (Control) and II (PLCζ deficient). Retrieved oocytes from partners were put into three categories: control group (Injected with sperm from group I, n=113), group without AOA (Injected with sperm from group II and no exposure to AOA, n=106), and group AOA (Injected with sperm from group II and exposure to AOA, n=114). Finally, fertilization results were compared via Kruskal-Wallis followed by Dunn's multiple comparison test. The p<0.05 was considered statistically significant. RESULTS Fertilization rate was significantly lower in the group without AOA compared to control group (41.9±6.3 vs. 78.1±4.7, p<0.001). AOA improved fertilization rate in group AOA compared to the group without AOA (69.5±3.9 vs. 41.9±6.3, p<0.01); however, cleavage (91.7±2.8, 90.9±4.6, and 95.2±3.4, respectively) and embryo quality (2.5±0.1, 2.3±0.2, and 2.4±0.2, respectively) scores were not substantially different between groups of control, with and without AOA. CONCLUSION We showed that PLCζ can be considered as a good biomarker in evaluation of oocyte activation capability. Further studies are required to establish the best use of PLCζ as a biomarker in clinics.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Azad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Department of Reproductive Biology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Nazari
- Department of Obstetrics and Gynecology, Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Masteri-Farahani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari-Novin
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding Author: Marefat Ghaffari Novin, Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, E-mail:,
| |
Collapse
|
27
|
Azad N, Nazarian H, Ghaffari Novin M, Masteri Farahani R, Piryaei A, Heidari MH, Abdollahpour Alitappeh M. Oligoasthenoteratozoospermic (OAT) men display altered phospholipase C ζ (PLCζ) localization and a lower percentage of sperm cells expressing PLCζ and post-acrosomal sheath WW domain-binding protein (PAWP). Bosn J Basic Med Sci 2018; 18:178-184. [PMID: 28954204 DOI: 10.17305/bjbms.2017.2208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/31/2023] Open
Abstract
Oligoasthenoteratozoospermia (OAT) is demonstrated to be one of the most common causes of male subfertility. Phospholipase C ζ (PLCζ), a sperm-specific protein, is considered to be one of the sperm-borne oocyte activating factors (SOAFs), which play a vital role in fertilization. The post-acrosomal sheath WW domain-binding protein (PAWP) is another candidate for SOAF. The aim of this study was to compare the PLCζ localization patterns and percentage of PLCζ- and PAWP-positive sperm cells in patients with OAT and fertile men with normozoospermia. A total of 40 men included in this study were classified into two groups: OAT (n = 25) and control group (n = 15). Semen samples were collected and analyzed using conventional semen analysis according to the World Health Organization guidelines. The percentage of PLCζ- and PAWP-positive sperm cells and localization patterns of PLCζ were evaluated using immunofluorescence staining. The mean percentage of sperm cells expressing PAWP and PLCζ was significantly lower in OAT compared to control group (52.8 ± 4.2 vs. 76.8 ± 5 and 63.4 ± 3.5 vs. 86.7 ± 2.1, respectively). In addition, statistically significant differences were found with regard to the PLCζ localization patterns, including equatorial, acrosomal + equatorial, and equatorial + post-acrosomal pattern, between the two groups (p < 0.01). The present study showed a lower percentage of sperm cells expressing PLCζ and PAWP, as well as altered localization patterns of PLCζ in men with OAT. Given the role of PLCζ and PAWP in fertilization, as two major candidates for SOAFs, our findings indicate that PLCζ and PAWP impairments may be one of the possible etiologies of decreased fertility in OAT.
Collapse
Affiliation(s)
- Nahid Azad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
28
|
Freour T, Barragan M, Torra-Massana M, Ferrer-Vaquer A, Vassena R. Is there an association between PAWP/WBP2NL sequence, expression, and distribution in sperm cells and fertilization failures in ICSI cycles? Mol Reprod Dev 2018; 85:163-170. [PMID: 29271520 DOI: 10.1002/mrd.22950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023]
Abstract
Successful fertilization in mammals depends on the sperm's ability to initiate intracellular Ca2+ oscillations in the egg, a phenomenon that is elicited by Sperm-oocyte activating factors (SOAFs), whose quantitative and/or qualitative defect might result in fertilization failure. One such proposed factor is Post-acrosomal WW domain-binding protein (PAWP/WBP2NL), although its ability to activate human oocytes has been questioned and its implication in human fertilization failure remains unknown. Here, we sought to determine if PAWP/WBP2NL expression and distribution in sperm cells associate with low/complete fertilization failure in males participating in intracytoplasmic sperm injection (ICSI) cycles. This prospective study was conducted on eight couples referred for elective ICSI with either the woman's own (n = 4) or a donor eggs (n = 4). Eight sperm donor samples used in ICSI, which resulted in normal fertilization rates, were used as the control group. For each male patient and donor sperm, PAWP/WBP2NL sequence, protein expression, and cellular distribution were analyzed by PCR amplification-sequencing, Western blot, and immunofluorescence, respectively. PAWP/WBP2NL was present in all samples, and no significant differences were detected between patients with fertilization failure and donors in sequence variants or mean protein expression, or in the proportion of PAWP/WBP2NL-positive sperm. In conclusion, no clear association between PAWP/WBP2NL protein expression in sperm and fertilization outcome in ICSI were observed from this cohort.
Collapse
Affiliation(s)
- Thomas Freour
- Clínica Eugin, Barcelona, Spain.,Service de médecine de la reproduction, CHU de Nantes, Nantes, France.,Inserm UMR1064-ITUN, Nantes, France.,Faculté de médecine, Université de Nantes, Nantes, France
| | | | | | | | | |
Collapse
|
29
|
The effect of prolonged incubation and temperature on oocyte activator phospholipase C-zeta activity of sperm. MARMARA MEDICAL JOURNAL 2017. [DOI: 10.5472/marumj.370643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv Biol Regul 2017; 67:148-162. [PMID: 29108881 DOI: 10.1016/j.jbior.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Oocyte activation is a fundamental event at mammalian fertilisation, initiated by a series of characteristic calcium (Ca2+) oscillations in mammals. This characteristic pattern of Ca2+ release is induced in a species-specific manner by a sperm-specific enzyme termed phospholipase C zeta (PLCζ). Reduction or absence of functional PLCζ within sperm underlies male factor infertility in humans, due to mutational inactivation or abrogation of PLCζ protein expression. Underlying such clinical implications, a significant body of evidence has now been accumulated that has characterised the unique biochemical and biophysical properties of this enzyme, further aiding the unique clinical opportunities presented. Herein, we present and discuss evidence accrued over the past decade and a half that serves to support the identity of PLCζ as the mammalian sperm factor. Furthermore, we also discuss the potential novel avenues that have yet to be examined regarding PLCζ mechanism of action in both the oocyte, and the sperm. Finally, we discuss the advances that have been made regarding the clinical therapeutic and diagnostic applications of PLCζ in potentially treating male infertility as a result of oocyte activation deficiency (OAD), and also possibly more general cases of male subfertility.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia.
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
31
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|
32
|
Azad N, Nazarian H, Ghaffari Novin M, Masteri Farahani R, Piryaei A, Heidari MH. Phospholipase C zeta parameters in sperm from polymorphic teratozoospermic men. Ann Anat 2017; 215:63-70. [PMID: 28954206 DOI: 10.1016/j.aanat.2017.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 01/16/2023]
Abstract
Teratozoospermia is a disorder associated with high abnormal sperm morphology which affects fertility in males. In recent years, it has been described that biomarker-based sperm quality evaluation can alleviate male infertility treatment. Phospholipase C zeta (PLCζ) is a sperm-specific factor which appears to be a predicting biomarker for fertilization potential of males. Following fertilization, PLCζ enters into oocyte cytoplasm and induces oocyte activation, a fundamental stage in initiation of embryo development. Currently, PLCζ parameters, including localization patterns, the proportion of PLCζ-expressing sperm and the expression level, are not defined in polymorphic teratozoospermic men. This study aimed to evaluate PLCζ parameters in polymorphic teratozoospermic men, and compare these parameters with fertile normozoospermic men. Semen samples from thirteen normozoospermic fertile men and twenty-three polymorphic teratozoospermic men were included in this study and evaluated using western blotting and immunofluorescence analyses. Our data indicated significantly lower expression of PLCζ in polymorphic teratozoospermic men, as compared with control men; however, there was no significant difference in localization patterns and the proportion of PLCζ-expressing sperm between polymorphic teratozoospermic patients and control men. Collectively, findings from the present study demonstrated that polymorphic teratozoospermic men did not show abnormal localization patterns or the absence of PLCζ, as compared to the control men; nonetheless, lower expression of PLCζ, considering its role in oocyte activation, might be one of the possible causes of infertility in these patients.
Collapse
Affiliation(s)
- Nahid Azad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; IVF Center, Taleghani Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca 2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017; 144:2914-2924. [PMID: 28694258 DOI: 10.1242/dev.150227] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Collapse
Affiliation(s)
- Alaa Hachem
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Minerva Ferrer Buitrago
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Andrew Bassett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sebastian Fox
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Petra de Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
34
|
Gat I, Orvieto R. "This is where it all started" - the pivotal role of PLCζ within the sophisticated process of mammalian reproduction: a systemic review. Basic Clin Androl 2017; 27:9. [PMID: 28533904 PMCID: PMC5438850 DOI: 10.1186/s12610-017-0054-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Mammalian reproduction is one of the most complex and fascinating biological phenomenon, which aims to transfer maternal and paternal genetic material to the next generation. At the end of oogenesis and spermatogenesis, both haploid gametes contain a single set of chromosomes ready to form the zygote, the first cell of the newly developing individual. The mature oocyte and spermatozoa remain in a quiescent state, during which the oocyte is characterized by nuclear and cytoplasmic arrest, while the spermatozoa necessitates further maturation within the epididymis and female reproductive track prior to egg fertilization. Either in vivo or in vitro, the sperm initiates a series of irreversible biochemical and physiological modifications in the oocyte. The earliest detected signal after fertilization is cytosolic Ca2+ oscillations, a prerequisite step for embryo development. These oscillations trigger the release of the oocyte from the second meiosis arrest towards embryogenesis, also known as “oocyte activation”. Phospholipase C zeta (PLCζ) is a unique sperm-soluble protein responsible for triggering the InsP3/Ca2+ pathway within the oocyte, leading to Ca2+ oscillations and consequently to embryo development. The specific structure of PLCζ (compared to other PLCs) enables its specialized activity via the preserved X and Y catalytic domains, as well as distinct features such as rapid onset, high sensitivity to Ca2+ and cession of oscillations upon zygote formation. The emerging discoveries of PLCζ have stimulated studies focusing on the possible clinical applications of this protein in male infertility evaluation and management during IVF/ICSI. Fertilization failure is attributed to lack of oocyte second meiosis resumption, suggesting that ICSI failure may be related to impaired PLCζ activity. Microinjection of recombinant human PLCζ to human oocytes after ICSI fertilization failure may trigger Ca2+ oscillations and achieve successful fertilization, offering new hope for couples traditionally referred to sperm donation. However, more studies are still required prior to the routine implementation of this approach in the clinic. Directions for future studies are discussed.
Collapse
Affiliation(s)
- Itai Gat
- IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| | - Raoul Orvieto
- IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Tarnesby-Tarnowski Chair for Family Planning and Fertility Regulation, Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|