1
|
Caraballo LAS, Filho LASF, Sena LS, Biagiotti D, de Moura JDS, de Sousa Júnior A, Rocha AO, de Sousa FCB, da Silva Santos NP, Sarmento JLR. Genome-wide association study applied to prolificacy in Santa Inês sheep. Trop Anim Health Prod 2025; 57:169. [PMID: 40214842 DOI: 10.1007/s11250-025-04424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025]
Abstract
This study aimed to identify genomic regions associated with prolificacy in Santa Inês sheep raised in tropical conditions. The prolificacy of the dam was defined as single (only one lamb born per ewe per lambing) or multiple (more than one animal born per ewe per lambing). After quality control of phenotypic data, 1584 lambing records of 715 females occurred between the years 2000 and 2018 were used. The animals were genotyped with the OvineSNP50 BeadChip panel (Illumina Inc.). After quality control of genomic data, information of 46,714 SNPs and 388 samples and females was used for the subsequent analyses. The single-step GWAS (ssGWAS) methodology was used to estimate the effects of genetic markers and their association with the prolificacy. A total of 21 windows of 10 adjacent SNPs that explained at least 0.5% of the additive genetic variance for prolificacy were identified. In such regions, genes associated with different reproductive functions in the female were found: CACNA1E, NTRK1, PLCH1, SMAD3, CENPF, TOPBP1, IL33, DRD2, MID1, HCCS, and ARHGAP6. Some candidate regions related to prolificacy harbor genes that were not previously described and genes without known functions. These results can help to identify genes associated with prolificacy and could be used in genomic reproductive studies on prolificacy, as well as in the selection of the most prolific ewes in the population.
Collapse
Affiliation(s)
- Luis Andrés Salazar Caraballo
- Agrarian Sciences Center (CCA), Federal University of Piauí (UFPI), Campus Universitário Ministro Petrônio Portella, Teresina, PI, Brazil
| | | | - Luciano Silva Sena
- Phd in Animal Science, Graduate Program in Animal Science, Agrarian Sciences Center (CCA), UFPI, Campus Universitário Ministro Petrônio Portella, Teresina, Brazil
| | - Daniel Biagiotti
- Technical College of Teresina, UFPI, Campus Ministro Petrônio Portella, Teresina, PI, Brazil
| | - José Dos Santos de Moura
- Federal Institute of Education, Science and Technology of Piauí, IFPI, José de Freitas, PI, Brazil
| | - Antônio de Sousa Júnior
- Technical College of Teresina, UFPI, Campus Ministro Petrônio Portella, Teresina, PI, Brazil
| | | | | | | | | |
Collapse
|
2
|
Zhang Y, Wang H, Li T, Zhang N, Chen J, Yang H, Peng S, Ma R, Wang D, Liu Q, Wang Y. Association of BMP15 and GDF9 Gene Polymorphisms with Litter Size in Hu Sheep. Genes (Basel) 2025; 16:168. [PMID: 40004497 PMCID: PMC11855564 DOI: 10.3390/genes16020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background: Litter size is one of the most important economic traits of sheep. The FecB locus has been extensively studied due to its significant impact on litter size in Hu sheep, and BMP15 and GDF9 have also been reported as major genes associated with litter size in sheep. This study aimed to identify variants of BMP15 and GDF9 and perform an association analysis of these variants with litter size in the Hu sheep breed. (2) Methods: In this study, exons of the BMP15 and GDF9 genes were fully sequenced to identify polymorphisms in Hu sheep. Population genetic parameters and haplotype frequencies were estimated, and an association analysis between these polymorphic loci and litter size was performed. Additionally, the protein structures of the wild-type and mutated BMP15 and GDF9 genes were predicted. (3) Results: The polymorphisms of the BMP15 and GDF9 genes were investigated within their exon regions, revealing mutations at four previously reported sites: BMP15 c.31_33CTTdel and GDF9 (G2, G3, and G4) in Hu sheep, with no novel variants were detected. Genetic analysis indicated that the GDF9-G3 and GDF9-G4 loci have low polymorphisms, whereas the BMP15 c.31_33CTTdel and the GDF9-G2 locus are moderately polymorphic. The mutation sites in the BMP15 and GDF9 genes were under Hardy-Weinberg equilibrium. Association analysis revealed that the BMP15 c.31_33CTTdel and GDF9 (G2, G3, and G4) mutations are not associated with litter size in Hu sheep. Protein structure prediction indicated that the mutations in BMP15 and GDF9 resulted in alterations to their tertiary structures. (4) Conclusions: In this study, four reported mutations in the BMP15 and GDF9 genes can also be detected in the Hu sheep breed. In these mutations, the G2 and G3 mutations of GDF9 did not alter the amino acid sequence, while the BMP15 c.31_33CTTdel mutation and the GDF9 G4 mutation resulted in protein structure alteration. Furthermore, the BMP15 c.31_33CTTdel mutation and the GDF9 mutations (G2, G3, G4) were associated with an increased tendency in litter size. However, no significant difference was observed (p > 0.05). This study provides valuable insights for improving the lambing performance of Hu sheep.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Life Science, Bengbu Medical University, Bengbu 233000, China; (Y.Z.); (S.P.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Haitao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Tingting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Na Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Jieran Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Hengqian Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Shiyu Peng
- School of Life Science, Bengbu Medical University, Bengbu 233000, China; (Y.Z.); (S.P.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Runlin Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Daxiang Wang
- Jiangsu Qianbao Animal Husbandry Co., Ltd., Yancheng 224050, China;
| | - Qiuyue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.W.); (T.L.); (N.Z.); (J.C.); (H.Y.); (R.M.)
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical University, Bengbu 233000, China; (Y.Z.); (S.P.)
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
3
|
Zhang R, Liu Y, Li W, Wang P, Liu Z, Wen Y, Chu M, Wang L. A mutation in LPAR2 activates the miR-939-5p-LPAR2-PI3K/AKT axis to regulate the proliferation and apoptosis of granulosa cells in sheep. Theriogenology 2024; 219:1-10. [PMID: 38368704 DOI: 10.1016/j.theriogenology.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Lysophosphatidic acid receptor-2 (LPAR2) is a G protein-coupled receptor, which is involved in various physiological processes such as cell development, proliferation, and apoptosis, and is thought to play an important role in follicular development and reproduction. There is evidence that miRNA recognition elements (MRE) in the gene 3'UTR often contain single nucleotide polymorphisms (SNPs) that can alter the binding affinity of the target miRNA, leading to dysregulation of gene expression. In this study, we detected a SNP in LPAR2 3 'UTR (rs410670692, c.*701C > T) in 384 small-tailed Han sheep using Sequenom MassARRAY®SNP genotyping. Association analysis showed that the SNP was significantly associated with litter size. Then, the effect of LPAR2 rs410670692 mutation on gene expression in sheep hosts was studied by molecular biotechnology. The results showed that the expression of LPAR2 in the TT genotype was significantly higher than that in the CC genotype, which confirmed the existence of rs410670692, a functional SNP, in LPAR2 3'UTR. We then used bioinformatics methods and double luciferase reporter gene assay to predict and confirm LPAR2 SNP rs410670692 as the direct targeting regulatory element of miR-939-5p. Cell transfection experiments further found that SNP rs410670692 down-regulated the mRNA and protein levels of LPAR2 by influencing the binding of miR-939-5p. To understand the function and mechanism of miR-939-5p in sheep granulosa cells (GCs), we conducted cell proliferation and apoptosis experiments which showed inhibited GCs proliferation along with promoted GCs apoptosis upon overexpression of miR-939-5p. Moreover, overexpression of miR-939-5p promotes apoptosis of granulosa cells by blocking the LPAR2-dependent PI3K/Akt signaling pathway. In conclusion, these results indicate that the SNP rs410670692 of LPAR2 is related to the litter size of small-tailed cold sheep, and miR-939-5p can act as a regulatory element binding to the C mutation of rs410670692 to regulate the expression of LPAR2, affect the development of GCs, and thus indirectly affect the litter size of sheep. These studies provide evidence for the involvement of LPAR2 polymorphism in sheep reproduction and are expected to provide new insights into the molecular genetic mechanisms of litter size traits in sheep.
Collapse
Affiliation(s)
- Runan Zhang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wentao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ziyi Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuliang Wen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Amandykova M, Orazymbetova Z, Kapassuly T, Kozhakhmet A, Khamzina S, Iskakov K, Dossybayev K. Detection of genetic variations in the GDF9 and BMP15 genes in Kazakh meat-wool sheep. Arch Anim Breed 2023; 66:401-409. [PMID: 38205376 PMCID: PMC10776884 DOI: 10.5194/aab-66-401-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024] Open
Abstract
Kazakh meat-wool sheep are of great interest because of the intrabreed multifetal type's high productivity of 140 %-160 %. Genes encoding growth differentiation factor-9 (GDF9) and bone morphogenetic protein 15 (BMP15) are promising candidates for studying sheep productivity, as they affect fertility in mammals, including sheep. Thus, the purpose of this study was to assess the fertility of the Kazakh meat-wool sheep breed based on GDF9 and BMP15 candidate genes of fecundity for the selection of animals with valuable genotypes. We selected 300 heads of the Kazakh meat-wool sheep breed from two populations for PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) analysis, 15 of which were subsequently used for sequencing of exon regions of the GDF9 and BMP15 genes. The sheep populations were tested for G1 and G8 mutations of the GDF9 gene and B2 and B4 mutations of the BMP15 gene. The PCR-RFLP analysis revealed that 59 (19.7 %) of the 300 Kazakh meat-wool breed sheep were heterozygous carriers of the G1 mutation (genotype AG) of the GDF9 gene, and sequencing analysis supported these results. The comparative phylogenetic analysis showed a clear separation of Kazakh meat-wool sheep wild types and carriers of the G1 mutation. This mutation was reported to have a relationship with the animals' litter size in other sheep breeds. For this reason, similar relationships should be investigated in Kazakh meat-wool sheep. However, G8, B2, and B4 mutations were not detected among the studied animal populations, showing that these mutations are not characteristic of the Kazakh meat-wool sheep breed.
Collapse
Affiliation(s)
- Makpal Amandykova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Zarina Orazymbetova
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
| | - Tilek Kapassuly
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Altynay Kozhakhmet
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
| | - Saltanat Khamzina
- Kazakh Research Institute of Livestock and Fodder Production, Almaty 050035, Kazakhstan
| | - Kairat Iskakov
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
- Kazakh Research Institute of Livestock and Fodder Production, Almaty 050035, Kazakhstan
| | - Kairat Dossybayev
- Laboratory of Animal Genetics and Cytogenetics, Institute of Genetics and Physiology SC MSHE RK, Almaty, 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| |
Collapse
|
5
|
Liu LL, Meng J, Ma HY, Cao H, Liu WJ. Candidate genes for litter size in Xinjiang sheep identified by Specific Locus Amplified Fragment (SLAF) sequencing. Anim Biotechnol 2023; 34:3053-3062. [PMID: 36244020 DOI: 10.1080/10495398.2022.2131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to investigate the selection signatures at a genome-wide level in 'Pishan' sheep using Specific Locus Amplified Fragment (SLAF)-seq. Blood samples from 126 ewes were sequenced using SLAF tags, and the ovarian tissues from 8 ewes (Bashbay sheep, a single litter size group (SG group); 'Pishan' sheep, double litter size group (DG group)) were collected to detect expression levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Selection signature analysis was performed using global fixation index (Fst) and nucleotide diversity (π) ratio. A total of 1,192,168 high-quality SLAFs were identified. Notably, 2380 candidate regions under selection using two approaches were identified. A total of 2069 genes were identified, which were involved in dopaminergic synapses, thyroid hormone synthesis, ovarian steroidogenesis and thyroid hormone signalling pathways. Furthermore, Growth Differentiation Factor 9 (GDF9), Period Circadian Regulator 2 (PER2), Thyroid Stimulating Hormone Receptor (TSHR), and Nuclear Receptor Coactivator 1 (NCOA1) reside within these regions and pathways. The expression levels of GDF9 and PER2 genes in sheep tissue of the DG group were significantly higher than those in the SG group. These genes are interesting candidates for litter size and provide a starting point for further identification of conservation strategies for 'Pishan' sheep.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Yu Ma
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hang Cao
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Antonopoulou D, Giantsis IA, Symeon GK, Avdi M. Association of MTNR1A and GDF9 gene allelles with the reproductive performance, response to oestrus induction treatments and prolificacy, in improved and non-improved local indigenous sheep breeds. Reprod Domest Anim 2023; 58:1532-1541. [PMID: 37668279 DOI: 10.1111/rda.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Sheep farming plays a crucial role for Mediterranean countries, wherefrom a plethora of dairy products is produced. Yet, numerous indigenous sheep breeds in temperate latitudes such as the Mediterranean present a serious drawback that milk production is impaired by the seasonality of reproduction. Towards the efforts for reduction of this phenomenon, the purpose of this study was to evaluate and compare different oestrus synchronization treatments, as well as to associate two genes alleles', namely the MTNR1A and the GDF9, with the response to those treatments. Three indigenous breeds were investigated (Florina, Chios and Karagouniko sheep) and inside each breed three different oestrus synchronization treatments were applied (A: intravaginal sponges, B: GNRH use and C: male effect). In group A, Florina ewes expressed oestrus at 90% in July and fecundity was 85%. Karagouniko and Chios ewes exhibited an oestrus expression of 100% with fecundity rates at 95% and 99%, respectively. In group B, Florina ewes expressed oestrus at 60% with fecundity at 57%, Karagouniko ewes expressed oestrus at 65% with fecundity at 54%, whereas Chios breed animals expressed oestrus at 87% with fecundity rate at 85%. In group C, 68% of the Florina breed expressed oestrus 20-25 days post ram induction, whereas this proportion was 84% and 94%, for Karagouniko and Chios breed, respectively. For the molecular analysis, partial segments of the two genes were sequenced and analysed, whereas alleles were scored based on the detected SNPs. All frequencies of the four detected SNPs in MTNR1A gene were statistically and significantly different in ewes that expressed oestrus in comparison with ewes that did not express oestrus in Florina and Karagouniko breeds concerning all treatments. Two SNP's were detected in GDF9 gene, G1 and FecG , from which, only the FecG mutation exhibited statistically significant difference in twins and triplets than in singles in Florina and Karagouniko breeds.
Collapse
Affiliation(s)
- Danai Antonopoulou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - George K Symeon
- Research Institute of Animal Science, HAO-Demeter, Giannitsa, Greece
| | - Melpomeni Avdi
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Polymorphism and phylogenetic analysis of FecB and FecG genes in native sheep of Meghalaya, India. Trop Anim Health Prod 2022; 54:367. [DOI: 10.1007/s11250-022-03366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
|
8
|
Aboelhassan DM, Darwish AM, Ali NI, Ghaly IS, Farag IM. A study on mutation points of GDF9 gene and their association with prolificacy in Egyptian small ruminants. J Genet Eng Biotechnol 2021; 19:85. [PMID: 34097165 PMCID: PMC8185100 DOI: 10.1186/s43141-021-00181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/14/2021] [Indexed: 11/27/2022]
Abstract
Background Genetic variants of the GDF9 gene were considered to be the potent gene markers for improving fecundity traits in Egyptian sheep and goats. Also, these favorable gene variants could be applied in the breeding program by gene-assisted selection (GAS), aiming towards the potential amelioration of reproduction and production in such small ruminants. The present investigation was designed to evaluate the genetic variants of the GDF9 gene on fecundity traits including the mean number of lambing “MNL” and mean number of twin production “MNTP” of Egyptian sheep and goats. Results This experiment involved 113 mothers, 83 of sheep and 30 of goats, at first, second, third, and fourth parity, and also 26 young females, 12 of sheep and 14 of goats at age of sexual maturation. T-ARMS-PCR analysis was performed on five mutation points (G1, G4, G6, G7, and G8). In sheep, the heterozygous mothers of G4 had significant elevation (P ≤ 0.05) of MNL and MNTP than wild-type homozygous ewes. However, the heterozygous mothers of G1 and G6 gave a reduction of MNL and MNTP as compared to mothers with wild-type genotypes. The ewes of G7 had heterozygous genotype (AG), and the ewes of G8 had wild type (CC). In goat, G4 and G7 were polymorphic, and G1, G6, and G8 were monomorphic type. Based on these findings, it must be selected the young sheep females of heterozygous in G4, and the young goat females of heterozygous in G4 and G7 for participating in a successful breeding program, because they will have potential high fecundity traits. Conclusion The present results confirmed that the genetic variants of the GDF9 gene were considered to be the major gene markers for enhancement of the prolificacy in Egyptian sheep and goats and could be applied in a successful breeding program by gene-assisted selection (GAS) in small ruminants.
Collapse
Affiliation(s)
- Dalia M Aboelhassan
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, 12622, Egypt.
| | - Ahmed M Darwish
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, 12622, Egypt
| | - Neama I Ali
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, 12622, Egypt
| | - Inas S Ghaly
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, 12622, Egypt
| | - Ibrahim M Farag
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Bohouth st., Dokki, Giza, 12622, Egypt
| |
Collapse
|
9
|
Osman NM, Shafey HI, Abdelhafez MA, Sallam AM, Mahrous KF. Genetic variations in the Myostatin gene affecting growth traits in sheep. Vet World 2021; 14:475-482. [PMID: 33776314 PMCID: PMC7994128 DOI: 10.14202/vetworld.2021.475-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Sheep productivity in developing countries is crucial, as this animal is an essential source of meat and wool. Myostatin (MSTN) plays an important role in the regulation of muscle mass through the regulation of muscle growth, differentiation, and regeneration. The present study sought to investigate genetic variation in the first intron of the MSTN gene and the association of variants with growth traits in major sheep breeds in Egypt (Barki, Ossimi, and Rahmani) and Saudi Arabia (Najdi) using polymerase chain reaction (PCR) and sequencing. Materials and Methods Blood samples were collected, and DNA was extracted from 75 animals. A 386 bp fragment in the first intron of the MSTN gene was amplified using PCR. Polymorphic sites were detected using direct sequencing and then correlated with growth traits using a general linear model. Results Sequence analysis of the first intron of MSTN gene identified six single-nucleotide polymorphisms (SNPs) in the studied breeds. Four mutual SNPs were determined: c.18 G>T, c.241 T>C, c.243 G>A, and c.259 G>T. In addition, two SNPs c.159 A>T and c.173 T>G were monomorphic (AA and TT, respectively) in the Ossimi, Rahmani, and Najdi breeds and polymorphic in the Barki breed. The association analysis revealed that the c.18 G>T and c.241 C>T significantly associated (p<0.05) with birth weight and average daily weight gain, respectively. Conclusion Our results strongly support MSTN as a candidate gene for marker-assisted selection in sheep breeding programs. Furthermore, the identified variants may be considered as putative markers to improve growth traits in sheep.
Collapse
Affiliation(s)
- Noha M Osman
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Heba I Shafey
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Mohamed A Abdelhafez
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Ahmed M Sallam
- Animal and Poultry Production Division, Desert Research Center, 11753, Mataryia, Egypt
| | - Karima F Mahrous
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| |
Collapse
|
10
|
Polymorphism Detection of GDF9 Gene and Its Association with Litter Size in Luzhong Mutton Sheep ( Ovis aries). Animals (Basel) 2021; 11:ani11020571. [PMID: 33671790 PMCID: PMC7926531 DOI: 10.3390/ani11020571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary GDF9 and BMPR1B are two important reproduction genes. In this study, the whole coding region of GDF9 was sequenced, of which the mutations were detected in Luzhong mutton sheep. The results suggested that two single nucleotide polymorphisms (SNPs), g.41768501A > G and g.41768485 G > A in GDF9 gene were associated with litter size. The g.41768485 G > A is a missense mutation which is predicted to affect the tertiary structure of the protein. Thus, these two mutations may be potential effective genetic markers to improve the litter size in sheep. Abstract Litter size is one of the most important economic traits in sheep. GDF9 and BMPR1B are major genes affecting the litter size of sheep. In this study, the whole coding region of GDF9 was sequenced and all the SNPs (single nucleotide polymorphisms) were determined in Luzhong mutton ewes. The FecB mutation was genotyped using the Sequenom MassARRAY®SNP assay technology. Then, the association analyses between polymorphic loci of GDF9 gene, FecB, and litter size were performed using a general linear model procedure. The results showed that eight SNPs were detected in GDF9 of Luzhong mutton sheep, including one novel mutation (g.41769606 T > G). The g.41768501A > G, g.41768485 G > A in GDF9 and FecB were significantly associated with litter size in Luzhong mutton ewes. The g.41768485 G > A is a missense mutation in the mature GDF9 protein region and is predicted to affect the tertiary structure of the protein. The results preliminarily demonstrated that GDF9 was a major gene affecting the fecundity of Luzhong mutton sheep and the two loci g.41768501A > G and g.41768485 G > A may be potential genetic markers for improving litter size.
Collapse
|
11
|
Imran FS, Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F. A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochem Genet 2020; 59:422-436. [PMID: 33048279 DOI: 10.1007/s10528-020-10006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
GREM1 (gremlin1) is a known inhibitor for BMP15 (bone morphogenetic protein 15) family, but its genetic diversity in sheep is unknown. The present study was conducted to analyze the polymorphism of GREM1 gene using PCR- single-strand conformation polymorphism (SSCP) and DNA sequencing methods and to assess the possible association of GREM1 gene polymorphism with reproductive traits in Awassi ewes. A total of 224 ewes, 124 producing singles and 100 producing twins, were included in the study. Two SSCP patterns were detected in two amplified loci within the exon 2. Two exonic novel single nucleotide polymorphism (SNP)s were identified, c.74 T > G (the silent SNP p.Met123 =) and c.30 T > A with (the missense SNP p.Ile237Phe). Statistical analyses indicated a non-significant (P > 0.05) association of p.Met123 = with the analyzed reproductive traits of fecundity, prolificacy, litter size, and twinning rate. Meanwhile, p.Ile237Phe SNP exhibited a highly significant (P < 0.01) association with the measured reproductive traits, in which ewes with TA genotype (with p.Ile237Phe SNP) exhibited higher litter size, twinning ratio, fecundity, and prolificacy than those with TT genotype (without p.Ile237Phe SNP). The deleterious impact of p.Ile237Phe SNP was observed by the means of ten different state-of-the-art in silico tools that predicted a highly damaging effect of p.Ile237Phe SNP on the structure, function, and stability of gremlin1. In conclusion, the results of our study suggest that p.Ile237Phe SNP has a remarkable negative impact on the gremlin1 structure, function, and stability. Since gremlin1 is a known inhibitor of reproductive performance, a consequent higher reproductive performance was observed in ewes with damaged gremlin1 (with p.Ile237Phe SNP) than those with non-damaged gremlin1 (without p.Ile237Phe SNP). Therefore, it can be stated that the implementation of the novel p.Ile237Phe SNP in the GREM1 gene could be a useful marker in marker-assisted selection. This manuscript is the first one to describe GREM1 gene variations in sheep.
Collapse
Affiliation(s)
- Faris S Imran
- Branch of Physiology, College of Veterinary Medicine, University of Kerbala, Fraiha, Kerbala, 56001, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq.
| | - Frederic Lepretre
- Univ. Lille, Plateau de Genomique Fonctionnelle Et Structurale, CHU Lille, Lille, France
| |
Collapse
|
12
|
Zhang Z, Tang J, He X, Di R, Chu M. Mutations in NLRP5 and NLRP9 are Associated with Litter Size in Small Tail Han Sheep. Animals (Basel) 2020; 10:ani10040689. [PMID: 32326631 PMCID: PMC7222816 DOI: 10.3390/ani10040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies showed that the NLR family pyrin domain-containing 5 (NLRP5) and NLRP9 genes are two important reproductive genes; however, their effects on sheep litter size are unknown. Therefore, in this study, we first genotyped seven sheep breeds via the MassARRAY® SNP system at the loci g.60495375A > G, g.60495363G > A, and g.60499690C > A in NLRP5, and g.59030623T > C and g.59043397A > C in NLRP9. Our results revealed that each locus in most sheep breeds contained three genotypes. Then, we conducted population genetic analysis of single nucleotide polymorphisms in NLRP5 and NLRP9, and we found that the polymorphism information content value in all sheep breeds ranged from 0 to 0.36, and most sheep breeds were under Hardy-Weinberg equilibrium (p > 0.05). Furthermore, association analysis in Small Tail Han sheep indicated that two loci, g.60495363G > A in NLRP5 and g.59030623T > C in NLRP9, were highly associated with litter size. The mutation in g.60495363G > A may decrease interactions of NLRP5 with proteins, such as GDF9, whereas the mutation in g.59030623T > C may enhance the combining capacity of NLRP9 with these proteins; consequently, these mutations may influence the ovulation rate and even litter size. The findings of our study provide valuable genetic markers that can be used to improve the breeding of sheep and even other mammals.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: ; Tel.: +86-010-6281-9850
| |
Collapse
|
13
|
Asadollahpour Nanaei H, Ayatollahi Mehrgardi A, Esmailizadeh A. Whole-genome sequence analysis reveals candidate genomic footprints and genes associated with reproductive traits in Thoroughbred horse. Reprod Domest Anim 2020; 55:200-208. [PMID: 31858623 DOI: 10.1111/rda.13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
The primary objective of most horse breeding operations was to maximize reproductive efficiency and minimize the cost of producing live foals. Here, we compared individual horses from the Thoroughbred population (n = 17), known as a horse breed with poor reproductive performance, with other six horse populations (n = 28), to detect genomic signatures of positive selection underlying of reproductive traits. A number of protein-coding genes with significant (p-value <.01) higher FST values (616 genes) and a lower value for nucleotide diversity (π) (310 genes) were identified. The results of our study revealed some candidate genes such as IGFBP2, IGFBP5, GDF9, BRINP3 and GRID1 are possibly associated with functions influencing reproductive traits. These genes may have been under selection due to their essential roles in reproduction performance in horses. The candidate selected genes identified in this work should be of great interest for future research into genetic architecture of traits relevant to horse breeding programmes.
Collapse
Affiliation(s)
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
14
|
Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals (Basel) 2019; 9:ani9110886. [PMID: 31683597 PMCID: PMC6912770 DOI: 10.3390/ani9110886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary As an important regulator factor, which was secreted by female oocytes, the growth differentiation factor 9 (GDF9) plays an essential role during the growth and differentiation of ovarian follicles. Single nucleotide polymorphisms (SNPs) within the GDF9 gene have been found to be involved in reproductive traits in livestock, and some of these mutations have been used as the effective makers in animal molecular breeding. However, it is remarkable that the SNPs of the goat GDF9 gene have not been systematically sorted and analyzed from the reported studies, which leads to an inability to find effective loci that could be applied in improving the prolificacy of goats via the molecular breeding method. In this study, we gathered and sorted 45 SNPs of the goat GDF9 gene from all relevant studies and the National Center for Biotechnology Information Search database (NCBI), and especially analyzed and discussed the relationship between part controversial and potentially effective SNPs and the reproductive traits. The results indicated that non-synonymous SNPs A240V, Q320P, and V397I and synonymous SNPs L61L, N121N, and L141L were six “true” positive SNPs in improving goat fertility. Nevertheless, the regulation pathways and the specific mechanism of these six SNPs on goat fecundity are not clear, which still need further study in more goat breeds and a large sample size. These results provided an effective tool for follow-up research studies on the molecular genetic breeding of goats’ reproductive traits. Abstract Goat reproductive traits are complex quantitative traits controlled by polygenes and multipoint. To date, some high-fertility candidate genes in livestock have been unearthed and the growth differentiation factor 9 (GDF9) gene is one of them, which plays a crucial role in early folliculogenesis. According to the relevant previous studies and the National Center for Biotechnology Information Search database (NCBI), a total of 45 single nucleotide polymorphisms (SNPs) have been detected in the goat GDF9 gene, but which one or which ones have important effects on goat fecundity is still uncertain. Hence, in order to find effective molecular markers for goat genetic breeding and accelerate the goat improvement, this study summarized and classified the above 45 SNPs into four kinds, as well as compared and analyzed the same SNP effects and the different SNPs linkage effects on the reproductive traits in different goat breeds. Since there were many SNPs in the goat GDF9 gene, only 15 SNPs have been identified in more than 30 goat breeds worldwide and they showed different effects on the litter size. Therefore, this study mainly chose these 15 SNPs and discussed their relationship with goat productivity. Results showed that three non-synonymous SNPs A240V, Q320P, and V397I and three synonymous ones L61L, N121N, and L141L played a “true” role in the litter size trait in many goat breeds around the world. However, the regulatory mechanisms still need further research. These results provide an effective tool for follow-up research developing the goat molecular breeding strategies and improving the goat reproductive traits.
Collapse
|
15
|
The genetic mechanism of high prolificacy in small tail han sheep by comparative proteomics of ovaries in the follicular and luteal stages. J Proteomics 2019; 204:103394. [PMID: 31146049 DOI: 10.1016/j.jprot.2019.103394] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022]
Abstract
To investigate the genetic mechanism of sheep prolificacy, protein profiling of ovaries in the follicular and luteal phases was conducted. The tandem mass tag technique was used to analyze the proteomes of ovaries from STH sheep that did not have the FecB mutation in the bone morphogenetic protein receptor 1B gene. Parallel Reaction Monitoring (PRM) was operated to validate the target differentially abundant proteins (DAPs). The result showed, a total of 34,037 peptides were found, and 5074 proteins were identified. The screened DAPs strictly related to energy metabolism, hormone synthesis, ovarian function were significantly enriched in oxidative phosphorylation(COX7A, ND5, and UQCR10), ovarian steroidogenesis(StAR and HSD3B), taurine and hypotaurine metabolism(CSAD), glycosaminoglycan biosynthesis-heparin sulfate/heparin(GLCE), necroptosis(H2AX, AIFM1, and FTH1), protein digestion and absorption(COL4A1 and COL4A5) and glycosaminoglycan degradation(HYAL2 and HEXB) pathways. These analyses indicated that the reproductive performance of sheep is regulated through different pathways. In consequence, these findings are an important resource that can be used in future studies of the genetic mechanism of high fecundity traits in sheep, and these DAPs can be further investigated as candidate markers to predict prolificacy of sheep. SIGNIFICANCE: Litter size is an important quantitative trait, but the genetic mechanism of high-prolificacy is still unclear in sheep. Our study identified potential signaling pathways and differentially abundant proteins related to reproductive performance. These findings will facilitate a better revealing the mechanism and provide possible targets for molecular design breeding for the formation of polytocous traits in sheep.
Collapse
|
16
|
Mohamed SEI, Ahmed RM, Jawasreh KIZ, Salih MAM, Abdelhalim DM, Abdelgadir AW, Obeidat MT, Musa LMA, Ahmed MKA. Genetic polymorphisms of fecundity genes in Watish Sudanese desert sheep. Vet World 2019; 13:614-621. [PMID: 32546903 PMCID: PMC7245700 DOI: 10.14202/vetworld.2020.614-621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIM The Watish sheep is a strain of desert sheep of smaller size compared to other desert sheep ecotypes, and there is anecdotal evidence that it is endowed with high litter size. The present study was designed for screening for polymorphisms in the known fecundity genes (bone morphogenetic protein receptor type 1B A MATERIALS AND METHODS The study involved 156 Watish ewes of 2-6 years of age, along with data on litter size in the first, second, and third parity from Sinnar state and contiguous Blue Nile State. Genomic DNA was isolated and genotyped using polymerase chain reaction-restriction fragment length polymorphism. Allele and genotype frequencies were calculated by direct counting. Chi-square test for goodness of fit was performed for agreement with Hardy-Weinberg expectations and association testing. RESULTS The results demonstrated that all individuals were non-carriers for the target mutations of FecB, BMP15 (FecXB, FecXH , and FecXI ), and GDF9-G8. With regard to the GDF9-G1 gene, the genotypic frequencies were 0.07% (G+) and 0.93% (++), in FecXG gene they were 0.993% (++) and 0.006% (B+), in PRL gene 0.516(++), 0.347(B+), and 0.137(BB). The Chi-square test showed a non-significant association between ewe's type of birth and the detected mutations genotypes. CONCLUSION These results preliminarily indicated that GDF9-G1, BMP15 (FecXG ), and PRL genes might have had some contribution for improving litter size in Watish Sudanese sheep. However, further studies using larger samples are needed to detect the effects of those mutations on Watish sheep litter size.
Collapse
Affiliation(s)
- Sara E. Ibrahim Mohamed
- Animal Production Research Centre, Animal Resources Research Corporation, Ministry of Animal Resources, Khartoum, Sudan
| | - Romaz M. Ahmed
- Institute for Studies and Promotion of Animal Exports, University of Khartoum, Khartoum, Sudan
| | - Khaleel I. Z. Jawasreh
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - M. A. M. Salih
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
- Department of Genetics and Bioinformatics, Central Laboratory, Ministry of Higher education and Scientific Research, Khartoum, Sudan
| | - Dalia Mursi Abdelhalim
- Department of Genetics and Bioinformatics, Central Laboratory, Ministry of Higher education and Scientific Research, Khartoum, Sudan
| | - A. W. Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Md. T. Obeidat
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - L. M. A. Musa
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Sudan
| | - Mohammed-Khair A. Ahmed
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Sudan
| |
Collapse
|
17
|
Wang X, Yang Q, Wang K, Yan H, Pan C, Chen H, Liu J, Zhu H, Qu L, Lan X. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 2018; 125:115-121. [PMID: 30414564 DOI: 10.1016/j.theriogenology.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
Growth differentiation factor 9 (GDF9) gene is an effective intra-ovarian regulator; it plays a crucial role in early folliculogenesis in female mammals. The non synonymous mutations: g.3905A > C (also known as p.Gln320Pro/Q320P) and g.4135G > A (also know as p.Val397Ile/V397I), are two well-known and controversial single nucleotide polymorphisms (SNPs) within GDF9 gene in goats with different prolificacy, and so far, there were no studies on linkage between Q320P and V397I. Therefore, the aim of this work was to study whether Q320P and V397I mutations have a significant effect on litter size, in Shaanbei white cashmere goats (SBWC, n = 1511), and to explore the specific relationship between these two SNPs. The results showed that both of Q320P and V397I mutations exhibited three genotypes; the minor allele frequencies (MAF) of the SNPs were 0.286 and 0.477, respectively; and these two SNPs were in strong linkage disequilibrium (D' = 0.976, r2 = 0.348) in the studied goats. Moreover, association analyses revealed that Q320P was significantly associated with the first-born litter size in goats irrespective of the sample size (n = 1511; P = 0.008), while V397I significantly affected litter size until the sample size crossed 1300 (P = 0.015). Meanwhile, the diplotypes PP-II and QP-VI were observed to have a superior effect on litter size (P = 3.78 × 10-5) to that of the haplotypes (P = 1.12 × 10-7). Thus, the findings led us to assume that Q320P mutation was the major SNP affecting goat litter size. These findings can provide useful DNA markers for selecting superior individuals in marker-assisted selection (MAS) for breeding in relation to fecundity in goats.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hailong Yan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China; Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jinwang Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
18
|
Tang J, Hu W, Di R, Liu Q, Wang X, Zhang X, Zhang J, Chu M. Expression Analysis of the Prolific Candidate Genes, BMPR1B, BMP15, and GDF9 in Small Tail Han Ewes with Three Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2018; 8:ani8100166. [PMID: 30274220 PMCID: PMC6210785 DOI: 10.3390/ani8100166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
Simple Summary As important prolific candidate genes, BMPR1B, BMP15, and GDF9 may affect the lambing performance of sheep. Therefore, regarding the three FecB genotypes of Small Tail Han (STH) sheep (FecB BB, FecB B+, and FecB ++), this study explored the gene expression characteristics of different tissues using reverse transcription PCR (RT-PCR) and real-time quantitative PCR (qPCR). The results showed that BMPR1B, BMP15, and GDF9 expression differed between the selected tissues, with all being highly expressed in the ovaries. Further analysis indicated that there was no significant difference in BMPR1B expression among the three FecB genotypes, but both GDF9 and BMP15 had the highest expression in FecB B+. As for other non-ovarian tissues, expression also varied. This study is relevant to understanding the high prolificacy of the STH breed. Abstract The expression characteristics of the prolific candidate genes, BMPR1B, BMP15, and GDF9, in the major visceral organs and hypothalamic–pituitary–gonadal (HPG) axis tissues of three FecB genotypes (FecB BB, FecB B+, and FecB ++) were explored in STH ewes using RT-PCR and qPCR. The results were as follows, BMPR1B was expressed in all FecB BB genotype (Han BB) tissues, and GDF9 was expressed in all selected tissues, but BMP15 was specifically expressed in the ovaries. Further study of ovarian expression indicated that there was no difference in BMPR1B expression between genotypes, but the FecB B+ genotype (Han B+) had greater expression of GDF9 and BMP15 than Han BB and FecB ++ genotype (Han ++) (p < 0.05, p < 0.01). BMP15 expression was lower in the ovaries of Han BB than in Han ++ sheep, but the reverse was shown for GDF9. The gene expression in non-ovarian tissues was also different between genotypes. Therefore, we consider that the three genes have an important function in ovine follicular development and maturation. This is the first systematic analysis of the tissue expression pattern of BMPR1B, BMP15, and GDF9 genes in STH sheep of the three FecB genotypes. These results contribute to the understanding of the molecular regulatory mechanism for ovine reproduction.
Collapse
Affiliation(s)
- Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
19
|
Guo X, Wang X, Di R, Liu Q, Hu W, He X, Yu J, Zhang X, Zhang J, Broniowska K, Chen W, Wu C, Chu M. Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries). Int J Mol Sci 2018; 19:ijms19020539. [PMID: 29439449 PMCID: PMC5855761 DOI: 10.3390/ijms19020539] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification.
Collapse
Affiliation(s)
- Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiarui Yu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | | | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China.
| | - Changxin Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|