1
|
Walter J, Colleoni S, Lazzari G, Fortes C, Grossmann J, Roschitzki B, Laczko E, Naegeli H, Bleul U, Galli C. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'. Mol Hum Reprod 2024; 30:gaae033. [PMID: 39288330 PMCID: PMC11444741 DOI: 10.1093/molehr/gaae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Colleoni
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Claudia Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| |
Collapse
|
2
|
Liu X, Li R, Xiu Z, Tang S, Duan Y. Toxicity mechanism of acrolein on energy metabolism disorder and apoptosis in human ovarian granulosa cells. Toxicology 2024; 506:153861. [PMID: 38866128 DOI: 10.1016/j.tox.2024.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 μM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 μM), but inhibition at higher ACR doses (≥50 μM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.
Collapse
Affiliation(s)
- Xueping Liu
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Rongxia Li
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Gynecology Medicine, The Second Hospital of Hebei Medicine University, Shijiazhuang, Hebei Province 050004, China
| | - Zi Xiu
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Siling Tang
- College of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Hebei Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, Hebei Province 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, Hebei Province 050091, China.
| |
Collapse
|
3
|
Venturas M, Racowsky C, Needleman DJ. Metabolic imaging of human cumulus cells reveals associations with pregnancy and live birth. Hum Reprod 2024; 39:1176-1185. [PMID: 38719791 PMCID: PMC11145010 DOI: 10.1093/humrep/deae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
STUDY QUESTION Can fluorescence lifetime imaging microscopy (FLIM) detect associations between the metabolic state of cumulus cell (CC) samples and the clinical outcome of the corresponding embryos? SUMMARY ANSWER FLIM can detect significant variations in the metabolism of CC associated with the corresponding embryos that resulted in a clinical pregnancy versus those that did not. WHAT IS KNOWN ALREADY CC and oocyte metabolic cooperativity are known to be necessary for the acquisition of developmental competence. However, reliable CC biomarkers that reflect oocyte viability and embryo developmental competency have yet to be established. Quantitative measures of CC metabolism could be used to aid in the evaluation of oocyte and embryo quality in ART. STUDY DESIGN, SIZE, DURATION A prospective observational study was carried out. In total, 223 patients undergoing IVF with either conventional insemination or ICSI at a tertiary care center from February 2018 to May 2020 were included, with no exclusion criteria applied. PARTICIPANTS/MATERIALS, SETTING, METHODS This cohort had a mean maternal age of 36.5 ± 4.4 years and an average oocyte yield of 16.9 (range 1-50). One to four CC clusters from each patient were collected after oocyte retrieval and vitrified. CC metabolic state was assessed using FLIM to measure the autofluorescence of the molecules NAD(P)H and FAD+, which are essential for multiple metabolic pathways. CC clusters were tracked with their corresponding oocytes and associated embryos. Patient age, Day 3 and Day 5/6 embryo morphological grades, and clinical outcomes of embryos with traceable fate were recorded. Nine FLIM quantitative parameters were obtained for each CC cluster. We investigated associations between the FLIM parameters and patient maternal age, embryo morphological rank, ploidy, and clinical outcome, where false discovery rate P-values of <0.05 were considered statistically significant. MAIN RESULTS AND THE ROLE OF CHANCE A total of 851 CC clusters from 851 cumulus-oocyte complexes from 223 patients were collected. Of these CC clusters, 623 were imaged using FLIM. None of the measured CC FLIM parameters were correlated with Day 3 morphological rank or ploidy of the corresponding embryos, but FAD+ FLIM parameters were significantly associated with morphological rank of blastocysts. There were significant differences for FAD+ FLIM parameters (FAD+ fraction engaged and short lifetime) from CC clusters linked with embryos resulting in a clinical pregnancy compared with those that did not, as well as for CC clusters associated with embryos that resulted in a live birth compared those that did not. LIMITATIONS, REASONS FOR CAUTION Our data are based on a relatively low number of traceable embryos from an older patient population. Additionally, we only assessed CCs from 1 to 4 oocytes from each patient. Future work in a younger patient population with a larger number of traceable embryos, as well as measuring the metabolic state of CCs from all oocytes from each patient, would provide a better understanding of the potential utility of this technology for oocyte/embryo selection. WIDER IMPLICATIONS OF THE FINDINGS Metabolic imaging via FLIM is able to detect CC metabolic associations with maternal age and detects variations in the metabolism of CCs associated with oocytes leading to embryos that result in a clinical pregnancy and a live birth versus those that do not. Our findings suggest that FLIM of CCs may be used as a new approach to aid in the assessment of oocyte and embryo developmental competence in clinical ART. STUDY FUNDING/COMPETING INTEREST(S) National Institutes of Health grant NIH R01HD092550-03 (to C.R., and D.J.N.). Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. and C.R. are inventors on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M Venturas
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Boston IVF-TheEugin Group, Waltham, MA, USA
| | - C Racowsky
- Department of Obstetrics and Gynecology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - D J Needleman
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| |
Collapse
|
4
|
Liu J, Shi D, Ma Q, Zhao P. Yangjing Zhongyu decoction facilitates mitochondrial activity, estrogenesis, and energy metabolism in H 2O 2-induced human granulosa cell line KGN. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115398. [PMID: 35605921 DOI: 10.1016/j.jep.2022.115398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT Yangjing Zhongyu decoction (YJZYD) is a recipe from a Chinese classic medical work and has been empirically used in female infertility for hundreds of years, but the mechanisms of YJZYD on facilitating ovarian granulosa cells remain unfold. AIM OF THE RESEARCH The purpose of the study is to determine the rewarding effects of YJZYD on H2O2-induced KGN cells, involving mitochondrial activity, estradiol biosynthesis, and energy metabolism. MATERIALS AND METHODS The ingredients of YJZYD were investigated by UPLC-ESI-MS/MS analysis. The effects of YJZYD and H2O2 on cell viability were determined by CCK-8. Intracellular ROS were assessed by DCFH-DA. Intracellular Ca2+ was detected using Fura-4 AM. Mitochondrial membrane potential (MMP) was measured by JC-1. The production of energy was assessed by ATP. Apoptosis rate was analyzed by Annexin V-FITC/PI. Western blotting was used to evaluate the expression of proteins related to energy metabolism, apoptosis, mitochondrial mitophagy, and estrogen biosynthesis. E2 levels were measured by ELISA. RESULTS 121 compounds were identified in YJZYD by UPLC-ESI-MS/MS analysis. YJZYD could enhance mitochondrial activity by suppressing intracellular ROS and Ca2+, and increasing MMP and ATP content. YJZYD stimulated the expression of anti-apoptosis protein Bcl-2 and lowered the early apoptosis rate and the expression of Bax. Besides, YJZYD rescued E2 secretion and improved the expression of FSHR, CYP19A1, and the ratio of p-CREB/CREB. In addition, YJZYD weakened H2O2-induced mitophagy by compromising the expression of PINK1, Parkin, Beclin1 and P62. Moreover, YJZYD strengthened energy metabolism by increasing ATP generation and the expression of SIRT1, PGC1α, NRF1, and COX IV. The combination of YJZYD and autophagy inhibitor had a stronger protective effect on energy metabolism. CONCLUSION This study evaluated the protective effects of YJZYD on H2O2-induced KGN cells. YJZYD could enhance mitochondrial activity, E2 biosynthesis, and energy metabolism. These results strongly indicated that YJZYD might play a role in preserving ovarian granulosa cells and female fecundity.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
5
|
Re-denudation of residual cumulus cells on day 3 increases the accuracy of cell-free DNA detection in spent embryo culture medium. J Assist Reprod Genet 2022; 39:1653-1660. [DOI: 10.1007/s10815-022-02511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
|
6
|
Cecchino GN, García-Velasco JA, Rial E. Reproductive senescence impairs the energy metabolism of human luteinized granulosa cells. Reprod Biomed Online 2021; 43:779-787. [PMID: 34600856 DOI: 10.1016/j.rbmo.2021.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Female age is the single greatest factor influencing reproductive performance and granulosa cells are considered as potential biomarkers of oocyte quality. Is there an age effect on the energy metabolism of human mural granulosa cells? DESIGN Observational prospective cohort and experimental study including 127 women who had undergone IVF cycles. Women were allocated to two groups: a group of infertile patients aged over 38 years and a control group comprising oocyte donors aged less than 35 years. Individuals with pathologies that could impair fertility were excluded from both groups. Following oocyte retrieval, cumulus and granulosa cells were isolated and their bioenergetic properties (oxidative phosphorylation parameters, rate of aerobic glycolysis and adenine nucleotide concentrations) were analysed and compared. RESULTS Human mural luteinized granulosa and cumulus cells present high rates of aerobic glycolysis that cannot be increased further when mitochondrial ATP synthesis is inhibited. Addition of follicular fluid to the experimental media is necessary to reach the full respiratory capacity of the cells. Granulosa cells from aged women present lower mitochondrial respiration (12.8 ± 1.6 versus 11.2 ± 1.6 pmol O2/min/mg; P = 0.046), although mitochondrial mass is not decreased, and lower aerobic glycolysis, than those from young donors (12.9 ± 1.3 versus 10.9 ± 0.5 mpH/min/mg; P = 0.009). The concurrent decrease in the two energy supply pathways leads to a decrease in the cellular energy charge (0.87 ± 0.01 versus 0.83 ± 0.02; P < 0.001). CONCLUSIONS Human mural luteinized granulosa cells exhibit a reduction in their energy metabolism as women age that is likely to influence female reproductive potential.
Collapse
Affiliation(s)
- Gustavo Nardini Cecchino
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Gynecology and Obstetrics, Rey Juan Carlos University, Alcorcón Madrid, Spain; IVI-Madrid, Aravaca Madrid 28023, Spain
| | - Juan Antonio García-Velasco
- Department of Gynecology and Obstetrics, Rey Juan Carlos University, Alcorcón Madrid, Spain; IVI-Madrid, Aravaca Madrid 28023, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| |
Collapse
|
7
|
Venturas M, Yang X, Kumar K, Wells D, Racowsky C, Needleman DJ. Metabolic imaging of human cumulus cells reveals associations among metabolic profiles of cumulus cells, patient clinical factors, and oocyte maturity. Fertil Steril 2021; 116:1651-1662. [PMID: 34481639 DOI: 10.1016/j.fertnstert.2021.07.1204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine whether fluorescence lifetime imaging microscopy (FLIM) detects differences in metabolic state among cumulus cell samples and whether their metabolic state is associated with patient age, body mass index (BMI), and antimüllerian hormone (AMH) level and maturity of the oocyte. DESIGN Prospective observational study. SETTING Academic laboratory. PATIENT(S) Cumulus cell (CC) clusters from cumulus-oocyte complexes were collected from patients undergoing assisted reproductive technology treatment after oocyte retrieval and vitrified. INTERVENTION(S) Cumulus cell metabolism was assessed using FLIM to measure autofluorescence of nicotinamide adenine (phosphate) dinucleotide and flavine adenine dinucleotide, endogenous coenzymes essential for cellular respiration and glycolysis. Patient age, BMI, and AMH level and the maturity of the corresponding oocytes were recorded. MAIN OUTCOME MEASURE(S) Quantitative information from FLIM was obtained regarding metabolite concentrations from fluorescence intensity and metabolite enzyme engagement from fluorescence lifetimes. Associations were investigated between each FLIM parameter and oocyte maturity and patient age, BMI, and AMH. Variance between CC clusters within and between patients was determined. RESULT(S) Of 619 CC clusters from 193 patients, 90 were associated with immature oocytes and 505 with metaphase II oocytes. FLIM enabled quantitative measurements of the metabolic state of CC clusters. These parameters were significantly correlated with patient age and AMH independently, but not with BMI. Cumulus cell nicotinamide adenine (phosphate) dinucleotide FLIM parameters and redox ratio were significantly associated with maturity of the enclosed oocyte. CONCLUSION(S) FLIM detects variations in the metabolic state of CCs, showing a greater variance among clusters from each patient than between patients. Fluorescence lifetime imaging microscopy can detect CC metabolic associations with patient age and AMH and variations between mature and immature oocytes, suggesting the potential utility of this technique to help identify superior oocytes.
Collapse
Affiliation(s)
- Marta Venturas
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola, Spain.
| | - Xingbo Yang
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Kishlay Kumar
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom; Juno Genetics, Oxford Science Park, Oxford, United Kingdom
| | - Catherine Racowsky
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Obstetrics and Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - Daniel J Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Center for Computational Biology, Flatiron Institute, New York, New York
| |
Collapse
|