1
|
Ren J, Keqie Y, Li Y, Li L, Luo M, Gao M, Peng C, Chen H, Hu T, Chen X, Liu S. Case report: Optical genome mapping revealed double rearrangements in a male undergoing preimplantation genetic testing. Front Genet 2023; 14:1132404. [PMID: 37065489 PMCID: PMC10102332 DOI: 10.3389/fgene.2023.1132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Chromosome rearrangement is one of the main causes of abortion. In individuals with double chromosomal rearrangements, the abortion rate and the risk of producing abnormal chromosomal embryos are increased. In our study, preimplantation genetic testing for structural rearrangement (PGT-SR) was performed for a couple because of recurrent abortion and the karyotype of the male was 45, XY der (14; 15)(q10; q10). The PGT-SR result of the embryo in this in vitro fertilization (IVF) cycle showed microduplication and microdeletion at the terminals of chromosomes 3 and 11, respectively. Therefore, we speculated whether the couple might have a cryptic reciprocal translocation which was not detected by karyotyping. Then, optical genome mapping (OGM) was performed for this couple, and cryptic balanced chromosomal rearrangements were detected in the male. The OGM data were consistent with our hypothesis according to previous PGT results. Subsequently, this result was verified by fluorescence in situ hybridization (FISH) in metaphase. In conclusion, the male’s karyotype was 45, XY, t(3; 11)(q28; p15.4), der(14; 15)(q10; q10). Compared with traditional karyotyping, chromosomal microarray, CNV-seq and FISH, OGM has significant advantages in detecting cryptic and balanced chromosomal rearrangements.
Collapse
Affiliation(s)
- Jun Ren
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lingping Li
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Min Luo
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Meng Gao
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Xinlian Chen, ; Shanling Liu,
| | - Shanling Liu
- Center of Prenatal Diagnosis, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- *Correspondence: Xinlian Chen, ; Shanling Liu,
| |
Collapse
|
2
|
Rossi C, Siffroi JP, Ruosso L, Rogers E, Becker M, Cassuto NG, Prat-Ellenberg L, Rouen A. Chromosomal segregation analysis and HOST-based sperm selection in a complex reciprocal translocation carrier. J Assist Reprod Genet 2023; 40:33-40. [PMID: 36441422 PMCID: PMC9840725 DOI: 10.1007/s10815-022-02665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Complex chromosomal rearrangements (CCRs) involve two or more chromosomes and at least three breakpoints. Due to their complexity, they are associated with a high number of unbalanced gametes, whose fertilization is often incompatible with viable fetal development. Preimplantation genetic diagnosis (PGD) is usually offered to those patients and typically shows modest results considering the high number of unbalanced embryos. We previously showed that a sperm selection process using the hypo-osmotic swelling test (HOST) allows for an 83% reduction in the proportion of unbalanced spermatozoa (US) in male rearrangements carriers. This is the first report of the use of this procedure in a CCR carrier. CASE DESCRIPTION We report on the case of a 36-year-old male t(4;7;14)(q12;p21;q11.2) carrier who presented to our center for infertility. Sperm fluorescent in situ hybridization showed an 88% proportion of unbalanced spermatozoa. After hypo-osmotic incubation and selection of spermatozoa with a specific flagellar conformation, the proportion of unbalanced spermatozoa dropped to 15%. DISCUSSION In the present case, we show that it is possible to select chromosomally balanced prior to in vitro fertilization in male CCR carriers. This technique has the potential of increasing the proportion of euploid embryos and therefore the chances of healthy pregnancy and birth.
Collapse
Affiliation(s)
- Capucine Rossi
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Léa Ruosso
- Laboratoire Drouot, 75009, Paris, France
| | - Eli Rogers
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Michael Becker
- Synlab International Services Germany (ISG), Leinfelden, Germany
| | | | - Laura Prat-Ellenberg
- Centre de Procréation Médicalement Assistée, Maternité Des Bluets, 75012, Paris, France
| | - Alexandre Rouen
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France.
- Vigilance Fatigue Sommeil Et Santé Publique, Université de Paris, ERC 7330, Paris, France.
- Centre du Sommeil Et de La Vigilance, AP-HP, Hôtel-DieuCentre de Référence Des Hypersomnies Rares, 75001, Paris, France.
| |
Collapse
|