1
|
Tritto V, Bettinaglio P, Mangano E, Cesaretti C, Marasca F, Castronovo C, Bordoni R, Battaglia C, Saletti V, Ranzani V, Bodega B, Eoli M, Natacci F, Riva P. Genetic/epigenetic effects in NF1 microdeletion syndrome: beyond the haploinsufficiency, looking at the contribution of not deleted genes. Hum Genet 2024; 143:775-795. [PMID: 38874808 PMCID: PMC11186880 DOI: 10.1007/s00439-024-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.
Collapse
Affiliation(s)
- Viviana Tritto
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Paola Bettinaglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Marasca
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Castronovo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Ranzani
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences (DBS), University of Milan, Milan, Italy
| | - Marica Eoli
- Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.
| | - Paola Riva
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.
| |
Collapse
|
2
|
Cassuto NG, Ogal N, Assou S, Ruoso L, Rogers EJ, Monteiro MJ, Thomas D, Siffroi JP, Rouen A. Different Nuclear Architecture in Human Sperm According to Their Morphology. Genes (Basel) 2024; 15:464. [PMID: 38674398 PMCID: PMC11049835 DOI: 10.3390/genes15040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Human sperm parameters serve as a first step in diagnosing male infertility, but not in determining the potential for successful pregnancy during assisted reproductive technologies (ARTs) procedures. Here, we investigated the relationship between sperm head morphology at high magnification, based on strict morphologic criteria, and the nuclear architecture analyzed by fluorescence in situ hybridization (FISH). We included five men. Two of them had an elevated high-magnification morphology score of 6 points (Score 6) indicating high fertility potential, whereas three had a low score of 0 points (Score 0), indicating low fertility potential. We used FISH to study the inter-telomeric distance and the chromosomal territory area of chromosome 1 (Chr. 1). We then compared these two parameters between subjects with high and low scores. FISH data analysis showed that the inter-telomeric distance (ITD) and chromosomal territory area (CTA) of Chr. 1 were significantly higher in subjects with low scores (score 0) than high scores (score 6). Our results suggest that (i) there is a link between nuclear architecture and sperm head abnormalities, particularly vacuoles; and (ii) it is possible to select spermatozoa with normal nuclear architecture, which might indirectly explain the positive ART outcomes observed with this technique.
Collapse
Affiliation(s)
- Nino-Guy Cassuto
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Nesrine Ogal
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, University Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| | - Lea Ruoso
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Eli-Jonathan Rogers
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | | | - Daniel Thomas
- ART Unit, Drouot Laboratory, 75009 Paris, France; (L.R.); (M.-J.M.); (D.T.)
| | - Jean-Pierre Siffroi
- Department of Medical Genetics, Armand-Trousseau Hospital, AP-HP, INSERM Unit U933, Sorbonne University, 75012 Paris, France; (N.O.); (E.-J.R.); (J.-P.S.)
| | - Alexandre Rouen
- Maternity of Bluets, Medically Assisted Reproduction Service, 75012 Paris, France
- AP-HP, Hôtel-Dieu, Sleep and Vigilance Center, Université Paris Cité, VIFASOM, ERC 7330, 75010 Paris, France
| |
Collapse
|
3
|
Zou J, Ni T, Yang M, Li H, Gao M, Zhu Y, Jiang W, Zhang Q, Yan J, Wei D, Chen ZJ. The effect of parental carrier of de novo mutated vs. inherited balanced reciprocal translocation on the chance of euploid embryos. F&S SCIENCE 2023; 4:193-199. [PMID: 37182600 DOI: 10.1016/j.xfss.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To evaluate whether the effect of de novo mutated balanced reciprocal translocation on the rate of euploid embryos varied from inherited balanced reciprocal translocation. DESIGN A retrospective cohort study compared the percentage of euploid embryo and proportion of patients with at least 1 euploid embryo between de novo mutated balanced reciprocal translocation (i.e., the group of de novo mutated carriers) and inherited balanced reciprocal translocation (i.e., the group of inherited carriers). SETTING An academic fertility center. PATIENT(S) A total of 413 couples with balanced reciprocal translocation (219 female carriers and 194 male carriers) who underwent their first cycle of preimplantation genetic testing for structural rearrangements were included. INTERVENTION(S) Carriers of balanced reciprocal translocation either de novo mutated or inherited. MAIN OUTCOME MEASURE(S) The percentage of euploid embryo and proportion of patients with at least 1 euploid embryo. RESULT(S) The carriers of the de novo mutated balanced reciprocal translocation had a lower percentage of euploid embryos (19.5% vs. 25.5%), and were less likely to have at least 1 euploid embryo (47.1% vs. 60.1%) compared with the carriers of the inherited balanced reciprocal translocation. In the male-carrier subgroup, the percentage of euploid embryos (16.7% vs. 26.7%) and proportion of patients with at least 1 euploid embryo (41.9% vs. 67.5%) were lower among the de novo mutated carriers than those among the inherited carriers. However, in the female-carrier subgroup, there was no statistically significant difference in the percentage of euploid embryos (22.4% vs. 24.4%) or the proportion of patients with at least 1 euploid embryo (52.3% vs. 53.7%) between the de novo mutated carriers and inherited carriers. CONCLUSION(S) The de novo mutated balanced reciprocal translocation was associated with a lower percentage of euploid embryos and lower chance of obtaining at least 1 euploid embryo than the inherited balanced reciprocal translocation.
Collapse
Affiliation(s)
- Jialin Zou
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Min Yang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Hongchang Li
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Ming Gao
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Yueting Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Wenjie Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Rossi C, Siffroi JP, Ruosso L, Rogers E, Becker M, Cassuto NG, Prat-Ellenberg L, Rouen A. Chromosomal segregation analysis and HOST-based sperm selection in a complex reciprocal translocation carrier. J Assist Reprod Genet 2023; 40:33-40. [PMID: 36441422 PMCID: PMC9840725 DOI: 10.1007/s10815-022-02665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Complex chromosomal rearrangements (CCRs) involve two or more chromosomes and at least three breakpoints. Due to their complexity, they are associated with a high number of unbalanced gametes, whose fertilization is often incompatible with viable fetal development. Preimplantation genetic diagnosis (PGD) is usually offered to those patients and typically shows modest results considering the high number of unbalanced embryos. We previously showed that a sperm selection process using the hypo-osmotic swelling test (HOST) allows for an 83% reduction in the proportion of unbalanced spermatozoa (US) in male rearrangements carriers. This is the first report of the use of this procedure in a CCR carrier. CASE DESCRIPTION We report on the case of a 36-year-old male t(4;7;14)(q12;p21;q11.2) carrier who presented to our center for infertility. Sperm fluorescent in situ hybridization showed an 88% proportion of unbalanced spermatozoa. After hypo-osmotic incubation and selection of spermatozoa with a specific flagellar conformation, the proportion of unbalanced spermatozoa dropped to 15%. DISCUSSION In the present case, we show that it is possible to select chromosomally balanced prior to in vitro fertilization in male CCR carriers. This technique has the potential of increasing the proportion of euploid embryos and therefore the chances of healthy pregnancy and birth.
Collapse
Affiliation(s)
- Capucine Rossi
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Léa Ruosso
- Laboratoire Drouot, 75009, Paris, France
| | - Eli Rogers
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France
| | - Michael Becker
- Synlab International Services Germany (ISG), Leinfelden, Germany
| | | | - Laura Prat-Ellenberg
- Centre de Procréation Médicalement Assistée, Maternité Des Bluets, 75012, Paris, France
| | - Alexandre Rouen
- Département de Génétique Médicale, Unité INSERM U933, Hôpital Armand-Trousseau, AP-HP, 75012, Paris, France.
- Vigilance Fatigue Sommeil Et Santé Publique, Université de Paris, ERC 7330, Paris, France.
- Centre du Sommeil Et de La Vigilance, AP-HP, Hôtel-DieuCentre de Référence Des Hypersomnies Rares, 75001, Paris, France.
| |
Collapse
|
5
|
Molecular Profiling of Spermatozoa Reveals Correlations between Morphology and Gene Expression: A Novel Biomarker Panel for Male Infertility. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1434546. [PMID: 34604380 PMCID: PMC8485144 DOI: 10.1155/2021/1434546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Choosing spermatozoa with an optimum fertilizing potential is one of the major challenges in assisted reproductive technologies (ART). This selection is mainly based on semen parameters, but the addition of molecular approaches could allow a more functional evaluation. To this aim, we used sixteen fresh sperm samples from patients undergoing ART for male infertility and classified them in the high- and poor-quality groups, on the basis of their morphology at high magnification. Then, using a DNA sequencing method, we analyzed the spermatozoa methylome to identify genes that were differentially methylated. By Gene Ontology and protein-protein interaction network analyses, we defined candidate genes mainly implicated in cell motility, calcium reabsorption, and signaling pathways as well as transmembrane transport. RT-qPCR of high- and poor-quality sperm samples allowed showing that the expression of some genes, such as AURKA, HDAC4, CFAP46, SPATA18, CACNA1C, CACNA1H, CARHSP1, CCDC60, DNAH2, and CDC88B, have different expression levels according to sperm morphology. In conclusion, the present study shows a strong correlation between morphology and gene expression in the spermatozoa and provides a biomarker panel for sperm analysis during ART and a new tool to explore male infertility.
Collapse
|
6
|
Bloch A, Rogers EJ, Nicolas C, Martin-Denavit T, Monteiro M, Thomas D, Morel H, Lévy R, Siffroi JP, Dupont C, Rouen A. Detailed cell-level analysis of sperm nuclear quality among the different hypo-osmotic swelling test (HOST) classes. J Assist Reprod Genet 2021; 38:2491-2499. [PMID: 34076795 DOI: 10.1007/s10815-021-02232-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We studied the quality differences between the different hypo-osmotic swelling test (HOST) classes, as measured by criteria of DNA fragmentation, DNA decondensation, and nuclear architecture. The aim was to find particular HOST classes associated with good-quality metrics, which may be potentially used in ICSI (intra-cytoplasmic sperm injection). METHODS Ten patients from the Department of Reproductive Medicine at Tenon Hospital (Paris, France) were included. Their semen samples were collected and divided into two fractions: one was incubated in a hypo-osmotic solution as per HOST protocol and sorted by sperm morphology, and a second was incubated without undergoing the HOST protocol to serve as an unsorted baseline. Three parameters were assessed: DNA fragmentation (TUNEL assay), DNA decondensation (chromomycin A3 assay), and nuclear architecture (FISH, with telomeric and whole chromosome painting probes). The different HOST classes were evaluated for these three parameters, and statistical analysis was performed for each class versus the unsorted non-HOST-treated sperm. Results with p<0.05 were considered statistically significant. RESULTS For each of the parameters evaluated, we found significant differences between HOST-selected spermatozoa and non-selected spermatozoa. Overall, spermatozoa of HOST classes B and B+ exhibited the highest quality based on four metrics (low DNA fragmentation, low DNA decondensation, short inter-telomeric distance, and small chromosome 1 territory area), while spermatozoa of HOST classes A and G exhibited the poorest quality by these metrics. CONCLUSION In addition to their pathophysiological interest, our results open possibilities of sperm selection prior to ICSI, which may allow for optimization of reproductive outcomes in heretofore unstudied patient populations.
Collapse
Affiliation(s)
- Adrien Bloch
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France
| | - Eli J Rogers
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France
| | - Cynthia Nicolas
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France
| | | | | | | | - Hélène Morel
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France
| | - Rachel Lévy
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP), Sorbonne-Université, 75020, Paris, France.,Centre de recherche Saint-Antoine, Inserm US938, Sorbonne Université, 75012, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France
| | - Charlotte Dupont
- Service de Biologie de la Reproduction CECOS, Hôpital Tenon (AP-HP), Sorbonne-Université, 75020, Paris, France.,Centre de recherche Saint-Antoine, Inserm US938, Sorbonne Université, 75012, Paris, France
| | - Alexandre Rouen
- Département de Génétique Médicale, Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, APHP, Hôpital d'Enfants Armand Trousseau, 26 avenue du Dr Arnold Netter, F-75012, Paris, France.
| |
Collapse
|