1
|
Lenert ME, Debner EK, Burton MD. Sensory neuron LKB1 mediates ovarian and reproductive function. Sci Rep 2024; 14:29109. [PMID: 39582088 PMCID: PMC11586444 DOI: 10.1038/s41598-024-79947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Treatments for reproductive disorders in women consist of hormone replacement therapy, which have negative side effects that impact health, spurring the need to understand new mechanisms to employ new therapeutic strategies. Bidirectional communication between sensory neurons and the organs they innervate is an emerging area of interest in tissue physiology with a relevance in reproductive disorders. We hypothesized that the metabolic activity of sensory neurons has a profound effect on reproductive phenotypes. To investigate this phenomenon, we utilized a murine model with conditional deletion of liver kinase B1 (LKB1), a serine/threonine kinase that regulates cellular metabolism in sensory neurons (Nav1.8cre; LKB1fl/fl). LKB1 deletion in sensory neurons resulted in reduced ovarian innervation from dorsal root ganglia neurons and increased follicular turnover compared to littermate controls. Female mice with this LKB1 deletion had significantly more pups per litter compared to wild-type females. Interestingly, the LKB1 genotype of male breeders had no effect on fertility outcomes, thus indicating a female-specific role of sensory neuron metabolism in fertility. In summary, LKB1 expression in peripheral sensory neurons plays an important role in modulating fertility of female mice via ovarian sensory innervation.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA.
- The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
2
|
Yu Y, Chen T, Zheng Z, Jia F, Liao Y, Ren Y, Liu X, Liu Y. The role of the autonomic nervous system in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 14:1295061. [PMID: 38313837 PMCID: PMC10834786 DOI: 10.3389/fendo.2023.1295061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
This article reviewed the relationship between the autonomic nervous system and the development of polycystic ovary syndrome (PCOS). PCOS is the most common reproductive endocrine disorder among women of reproductive age. Its primary characteristics include persistent anovulation, hyperandrogenism, and polycystic ovarian morphology, often accompanied by disturbances in glucose and lipid metabolism. The body's functions are regulated by the autonomic nervous system, which consists mainly of the sympathetic and parasympathetic nervous systems. The autonomic nervous system helps maintain homeostasis in the body. Research indicates that ovarian function in mammals is under autonomic neural control. The ovaries receive central nervous system information through the ovarian plexus nerves and the superior ovarian nerves. Neurotransmitters mediate neural function, with acetylcholine and norepinephrine being the predominant autonomic neurotransmitters. They influence the secretion of ovarian steroids and follicular development. In animal experiments, estrogen, androgens, and stress-induced rat models have been used to explore the relationship between PCOS and the autonomic nervous system. Results have shown that the activation of the autonomic nervous system contributes to the development of PCOS in rat. In clinical practice, assessments of autonomic nervous system function in PCOS patients have been gradually employed. These assessments include heart rate variability testing, measurement of muscle sympathetic nerve activity, skin sympathetic response testing, and post-exercise heart rate recovery evaluation. PCOS patients exhibit autonomic nervous system dysfunction, characterized by increased sympathetic nervous system activity and decreased vagal nerve activity. Abnormal metabolic indicators in PCOS women can also impact autonomic nervous system activity. Clinical studies have shown that various effective methods for managing PCOS regulate patients' autonomic nervous system activity during the treatment process. This suggests that improving autonomic nervous system activity may be an effective approach in treating PCOS.
Collapse
Affiliation(s)
- Yue Yu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Zheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Liao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehan Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmin Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Lenert ME, Burton MD. Sensory neuron LKB1 mediates ovarian and reproductive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534533. [PMID: 37034663 PMCID: PMC10081243 DOI: 10.1101/2023.03.28.534533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Treatments for reproductive disorders in women primarily consist of hormone replacement therapy, which can have negative health impacts. Bidirectional communication between sensory neurons and innervated organs is an emerging area of interest in tissue physiology with potential relevance for reproductive disorders. Indeed, the metabolic activity of sensory neurons can have profound effects on reproductive phenotypes. To investigate this phenomenon, we utilized a murine model with conditional deletion in sensory neurons of liver kinase B1 (LKB1), a serine/threonine kinase that regulates cellular metabolism. Female mice with this LKB1 deletion (Nav1.8cre;LKB1fl/fl) had significantly more pups per litter compared to wild-type females. Interestingly, the LKB1 genotype of male breeders had no effect on fertility outcomes, thus indicating a female-specific role of sensory neuron metabolism in fertility. LKB1 deletion in sensory neurons resulted in reduced ovarian innervation from dorsal root ganglia neurons and increased follicular turnover compared to littermate controls. In summary, LKB1 expression in peripheral sensory neurons plays an important role in modulating fertility of female mice via ovarian sensory innervation.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX 75080
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
4
|
Villa PA, Lainez NM, Jonak CR, Berlin SC, Ethell IM, Coss D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein ( Fmr1) gene mutation. Front Endocrinol (Lausanne) 2023; 14:1129534. [PMID: 36909303 PMCID: PMC9992745 DOI: 10.3389/fendo.2023.1129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| |
Collapse
|
5
|
Vallcaneras S, Morales L, Delsouc MB, Ramirez D, Filippa V, Fernández M, Telleria CM, Casais M. Interplay between nitric oxide and gonadotrophin-releasing hormone in the neuromodulation of the corpus luteum during late pregnancy in the rat. Reprod Biol Endocrinol 2022; 20:19. [PMID: 35081973 PMCID: PMC8793209 DOI: 10.1186/s12958-022-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3β-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.
Collapse
Affiliation(s)
- Sandra Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Laura Morales
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - María Belén Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Darío Ramirez
- Laboratorio de Medicina Experimental & Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Verónica Filippa
- Laboratorio de Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5700, San Luis, Argentina
| | - Marina Fernández
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), V. de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Duff Medical Sciences Building, Laboratory B22, Montreal, Quebec, PC H3A 2B4, Canada.
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina.
| |
Collapse
|
6
|
Morales L, Vallcaneras S, Delsouc MB, Filippa V, Aguilera-Merlo C, Fernández M, Casais M. Neuromodulatory effect of GnRH from coeliac ganglion on luteal regression in the late pregnant rat. Cell Tissue Res 2021; 384:487-498. [PMID: 33779845 DOI: 10.1007/s00441-021-03436-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
The GnRH/GnRH receptor system has been found in several extrapituitary tissues, although its physiological significance has not yet been well established. Taking into account that the peripheral neural system can act as a modulator of pregnancy corpus luteum, the objective was to physiologically investigate the presence of the GnRH system in coeliac ganglion (CG) and to analyse its possible involvement in luteal regression through the superior ovarian nerve (SON) at the end of pregnancy in the rat. The integrated ex vivo CG-SON-Ovary system of rats on day 21 of pregnancy was used. Cetrorelix (CTX), a GnRH receptor antagonist, was added into the ganglionic compartment while the control systems were untreated. Ganglionic GnRH release was detected under basal conditions. Then, the CTX addition in CG increased it, which would indicate the blockade of the receptor. In turn, CTX in CG caused an increase in ovarian progesterone release. Furthermore, the luteal cells showed an increase in the expression of Hsd3b1 and a decrease in the expression of Akr1c3 (progesterone synthesis and degradation enzymes, respectively), reduced TUNEL staining according to an increase in the antioxidant defence system activity and low lipid peroxide levels. The ovarian and ganglionic nitric oxide (NO) release increased, while the luteal nitrotyrosine content, measured as nitrosative stress marker, decreased. CTX in CG decreased the ovarian noradrenaline release. The present study provides evidence that GnRH from CG may trigger neuronal signals that promote the luteal regression in late pregnancy by affecting the release of NO and noradrenaline in the ovary.
Collapse
Affiliation(s)
- Laura Morales
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Sandra Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - María Belén Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Verónica Filippa
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5700, San Luis, Argentina
| | - Claudia Aguilera-Merlo
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
| | - Marina Fernández
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), V. de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
7
|
Puga Y Colmenares MC, Trujillo Hernández A, Morales-Ledesma L. Unilateral section of the superior ovarian nerve induces first ovulation in the Zucker fatty (fa/fa) rat. Gen Comp Endocrinol 2021; 300:113636. [PMID: 33017581 DOI: 10.1016/j.ygcen.2020.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Hyperactivity in the sympathetic nervous system has been shown to be related to the development of ovarian pathologies. In addition, obesity has been found to be associated with multiple reproductive anomalies and is considered a chronic stress condition of low intensity with changes in the peripheral sympathetic activity. Therefore, in the present study, we aimed to evaluate if the information reaching the ovaries through the superior ovarian nerve (SON) modifies the ovarian function of Zucker fatty rats. We performed a unilateral section of the SON at 32 days of age and autopsies were carried out on the day of the first vaginal estrus. The results showed that fatty animals do not ovulate on the day of the first vaginal estrus and exhibit an increase in catecholaminergic fibers and the presence of precystic structures in the ovaries, without changes in the onset of puberty or in the secretion of ovarian and hypophyseal hormones. We also found that the section of the right SON resulted in ovulation on the day of the first vaginal estrus, which was accompanied by a decrease in ovarian noradrenaline content. The section of the left SON caused a delay in puberty without changes in the rest of the parameters. These results provide functional evidence that the peripheral sympathetic innervation participates in the regulation of ovarian functions in an animal model of genetic obesity.
Collapse
Affiliation(s)
- María Concepción Puga Y Colmenares
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Edificio 112A Ciudad Universitaria, CP 72590 Puebla, Puebla, Mexico.
| | - Angélica Trujillo Hernández
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Edificio 112A Ciudad Universitaria, CP 72590 Puebla, Puebla, Mexico.
| | - Leticia Morales-Ledesma
- Laboratorio de Fisiología Reproductiva, Unidad de investigación en Biología de la Reproducción, Facultad de Estudios Superiores Zaragoza, UNAM, AP 9-020, CP 15000 Ciudad de México, Mexico.
| |
Collapse
|