1
|
Zeng Y, Huang Y, Liu Y, Shen X, Nie Y, Wang L, Kuang Y. Clomiphene citrate reduces premature LH surge in obese women during controlled ovarian stimulation: a retrospective cohort study. Front Endocrinol (Lausanne) 2025; 16:1512821. [PMID: 40190405 PMCID: PMC11968341 DOI: 10.3389/fendo.2025.1512821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Background Clomiphene citrate effectively suppressed the negative feedback of estrogen on the hypothalamus and induces premature luteinizing hormone (LH) surge during controlled ovulation stimulation, while obese women often have impaired hypothalamic-pituitary function. This study aimed to investigate whether the utilization of clomiphene citrate for controlled ovulation stimulation in obese women can effectively decrease the likelihood of premature LH surge. Methods A retrospective study was conducted on women under the age of 38 with normal menstrual cycles and ovarian reserve who underwent controlled ovulation stimulation (COH) using clomiphene citrate. The participants were categorized by the Asian body mass index (BMI) classification. The dynamic reproductive endocrinological profiles during COH, especially the probability of serum LH concentration exceeding 10 IU/L, as well as the outcomes related to the embryo development and pregnancy, were compared among three BMI groups. Results The basal levels of LH exhibited a significant reduction in overweight and obese women (p<0.001). Additionally, there was a significant decrease in the incidence of LH concentration exceeding 10 IU/L during controlled ovulation stimulation among overweight and obese women (7.19% vs 3.62% vs2.27%, p<0.05). Moreover, there were no significant differences observed among the three BMI groups regarding embryo transfer numbers, implantation, pregnancy or live birth rates. Conclusions In obese women, clomiphene citrate effectively controlled LH levels, resulting a low prevalence of premature LH surge compared to patients with normal weight. This evidence contributes to a safer and more effective treatment for infertility in obese individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Wang
- *Correspondence: Li Wang, ; Yanping Kuang,
| | | |
Collapse
|
2
|
Lin LT, Li CJ, Lee YS, Tsui KH. Recombinant Follicle-Stimulating Hormone and Luteinizing Hormone Enhance Mitochondrial Function and Metabolism in Aging Female Reproductive Cells. Int J Mol Sci 2024; 26:83. [PMID: 39795942 PMCID: PMC11720038 DOI: 10.3390/ijms26010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not. Mitochondrial function was assessed through various assays, including mitochondrial mass, membrane potential, ROS levels, and ATP production. Mitochondrial dynamics and morphology were analyzed using MitoTracker staining. Cellular respiration was measured using a Seahorse Bioenergetics Analyzer. Metabolic reprogramming was evaluated through gene expression analysis and metabolite profiling. In vivo effects were studied using aging mouse oocytes. FSH/LH treatment significantly improved mitochondrial function in aging granulosa cells, increasing mitochondrial mass and membrane potential while reducing ROS levels. Mitochondrial dynamics showed a shift towards fusion and elongation. Cellular respiration, ATP production, and spare respiratory capacity were enhanced. FSH/LH-induced favorable alterations in cellular metabolism, favoring oxidative phosphorylation. In aging mouse oocytes, FSH/LH treatment improved in vitro maturation and mitochondrial health. In conclusion, FSH/LH supplementation ameliorates age-related mitochondrial dysfunction and improves cellular metabolism in aging female reproductive cells.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- College of Health and Nursing, Meiho University, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Shan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- College of Health and Nursing, Meiho University, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Kaseder M, Schmid N, Eubler K, Goetz K, Müller-Taubenberger A, Dissen GA, Harner M, Wanner G, Imhof A, Forne I, Mayerhofer A. Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells. Mol Hum Reprod 2022; 28:6659106. [PMID: 35944223 PMCID: PMC9802053 DOI: 10.1093/molehr/gaac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.
Collapse
Affiliation(s)
| | | | | | - Katharina Goetz
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University Oregon National Primate Research Center, Beaverton, OR, USA
| | - Max Harner
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Ignasi Forne
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Correspondence address. Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine Ludwig Maximilian University of Munich, D-82152 Planegg-Martinsried, Germany. E-mail:
| |
Collapse
|
4
|
Colella M, Cuomo D, Peluso T, Falanga I, Mallardo M, De Felice M, Ambrosino C. Ovarian Aging: Role of Pituitary-Ovarian Axis Hormones and ncRNAs in Regulating Ovarian Mitochondrial Activity. Front Endocrinol (Lausanne) 2021; 12:791071. [PMID: 34975760 PMCID: PMC8716494 DOI: 10.3389/fendo.2021.791071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
The number of mitochondria in the oocyte along with their functions (e.g., energy production, scavenger activity) decline with age progression. Such multifaceted functions support several processes during oocyte maturation, ranging from energy supply to synthesis of the steroid hormones. Hence, it is hardly surprising that their impairment has been reported in both physiological and premature ovarian aging, wherein they are crucial players in the apoptotic processes that arise in aged ovaries. In any form, ovarian aging implies the progressive damage of the mitochondrial structure and activities as regards to ovarian germ and somatic cells. The imbalance in the circulating hormones and peptides (e.g., gonadotropins, estrogens, AMH, activins, and inhibins), active along the pituitary-ovarian axis, represents the biochemical sign of ovarian aging. Despite the progress accomplished in determining the key role of the mitochondria in preserving ovarian follicular number and health, their modulation by the hormonal signalling pathways involved in ovarian aging has been poorly and randomly explored. Yet characterizing this mechanism is pivotal to molecularly define the implication of mitochondrial dysfunction in physiological and premature ovarian aging, respectively. However, it is fairly difficult considering that the pathways associated with ovarian aging might affect mitochondria directly or by altering the activity, stability and localization of proteins controlling mitochondrial dynamics and functions, either unbalancing other cellular mediators, released by the mitochondria, such as non-coding RNAs (ncRNAs). We will focus on the mitochondrial ncRNAs (i.e., mitomiRs and mtlncRNAs), that retranslocate from the mitochondria to the nucleus, as active players in aging and describe their role in the nuclear-mitochondrial crosstalk and its modulation by the pituitary-ovarian hormone dependent pathways. In this review, we will illustrate mitochondria as targets of the signaling pathways dependent on hormones and peptides active along the pituitary/ovarian axis and as transducers, with a particular focus on the molecules retrieved in the mitochondria, mainly ncRNAs. Given their regulatory function in cellular activities we propose them as potential diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Falanga
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
- *Correspondence: Concetta Ambrosino,
| |
Collapse
|