1
|
Jin CL, Wang SL, Wang S, Zhang YN, Xia WG, Zhang C, Huang XB, Li KC, Zheng CT, Chen W. Age-related calcium signaling disturbance restricted cAMP metabolism and induced ovarian oxidation stress in laying ducks. Poult Sci 2025; 104:104551. [PMID: 39662254 PMCID: PMC11697049 DOI: 10.1016/j.psj.2024.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
The ovary is the main controller of female fertility, unfortunately, its onset of aging processes was earlier than other organs. Our previous studies showed calcium (Ca) deficiency reduced ovarian weight and declined numbers of dominant follicles in an avian model. However, whether Ca provided a functional role in follicle development of aged avian, and its further mechanism was still unknown. In this study, fifty180-day-old and fifty 700-day-old female Longyan ducks were divided into the young group and the aged group to illustrate the differences of Ca signaling and further mechanisms. We found the poor productive performance of aged ducks was correlated with follicle decreased numbers and atrophied microstructure, and restricted antioxidant ability of granulosa cells (GCs). Then, according to RNA-Seq analysis, we detected those aged ducks displayed lower Ca concentration in the ovary, while Ca channel related gene expression was increased in GCs to maintain homeostasis. Moreover, the cyclic adenosine monophosphate (cAMP) concentration and cAMP synthase family related genes were also decreased in GCs of aged ducks. Fortunately, medium supplemented with Ca channel-activator A23187 enhanced GC viability, antioxidant ability, tight junction ability, and increased cAMP concentration by improved cAMP metabolism, otherwise, the opposite changes were observed with Ca2+-chelating agent EGTA or Ca channel-inhibitor Verapamil supplementation. In conclusion, aging disordered Ca signaling to limit cAMP metabolism, then decreased antioxidant ability and inhibited proliferation and migration ability of GCs. Thus, the follicle development and reproductive performance were restricted in aged avian.
Collapse
Affiliation(s)
- Cheng-Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Sheng-Lin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Ya-Nan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Wei-Guang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Chang Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Xue-Bing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Kai-Chao Li
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Chun-Tian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry/Institute of Animal Science, Guangdong Academy of Agricultural Sciences/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Yang D, Hu Q, Zhao S, Hu X, Gao X, Dai F, Zheng Y, Yang Y, Cheng Y. An optofluidic system for the concentration gradient screening of oocyte protection drugs. Talanta 2024; 278:126472. [PMID: 38924991 DOI: 10.1016/j.talanta.2024.126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Oocytes protective drug screening is essential for the treatment of reproductive diseases. However, few studies construct the oocyte in vitro drug screening microfluidic systems because of their enormous size, scarcity, and sensitivity to the culture environment. Here, we present an optofluidic system for oocyte drug screening and state analysis. The system consists of two parts: an open-top drug screening microfluidic chip and an optical Fourier filter analysis part. The open-top microfluidic chip anchors single oocyte with hydrogel and allows nutrient and gas environment updating which is essential for oocyte culturing. The optical filter analysis part is used to accurately analyse the status of oocytes. Based on this system, we found that fluorene-9-bisphenol (BHPF) damaged the oocyte spindle in a dose-dependent manner, a high dose of melatonin (10-3 M) effectively reduces the percentage of abnormally arranged chromosomes of oocytes exposed to 40 μM BHPF. This optofluidic system shows great promise for the culture of oocytes and demonstrates the robust ability for convenient multi-concentration oocytes drug screening. This technology may benefit further biomedicine and reproductive toxicology applications in the lab on a chip community.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Deng D, Xie J, Tian Y, Zhu L, Liu X, Liu J, Huang G, Li J. Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence. Front Endocrinol (Lausanne) 2023; 14:1200051. [PMID: 37455899 PMCID: PMC10338221 DOI: 10.3389/fendo.2023.1200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Acquisition of germinal vesicle (GV) stage oocytes for fertility preservation (FP) offers several benefits over in vivo matured oocyte cryopreservation following ovarian stimulation, particularly for cancer patients necessitating immediate treatment. Two FP approaches for GV oocytes are available: vitrification before in vitro maturation (IVM) at the GV stage (GV-VI) or post-IVM at the metaphase II (MII) stage (MII-VI). The optimal method remains to be determined. Methods In this study, mouse oocytes were collected without hormonal stimulation and vitrified either at the GV stage or the MII stage following IVM; non-vitrified in vitro matured MII oocytes served as the control (CON). The oocyte quality and developmental competence were assessed to obtain a better method for immediate FP. Results No significant differences in IVM and survival rates were observed among the three groups. Nevertheless, GV-VI oocytes exhibited inferior quality, including abnormal spindle arrangement, mitochondrial dysfunction, and early apoptosis, compared to MII-VI and CON oocytes. Oocyte vitrification at the GV stage impacted maternal mRNA degradation during IVM. In addition, the GV-VI group demonstrated significantly lower embryonic developmental competence relative to the MII-VI group. RNA sequencing of 2-cell stage embryos revealed abnormal minor zygotic genome activation in the GV-VI group. Conclusion Vitrification at the GV stage compromised oocyte quality and reduced developmental competence. Consequently, compared to the GV stage, oocyte vitrification at the MII stage after IVM is more suitable for patients who require immediate FP.
Collapse
Affiliation(s)
- Dongmei Deng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Tian
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junxia Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Lee S, Kim HJ, Cho HB, Kim HR, Lee S, Park JI, Park KH. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process. Biomater Sci 2023; 11:2912-2923. [PMID: 36883517 DOI: 10.1039/d2bm02054h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Almost all cells can be exposed to stress, but oocytes, which are female germ cells, are particularly vulnerable to damage. In this study, melatonin, a well-known antioxidant, was loaded into biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and delivered to damaged oocytes in order to improve their quality and restoration. Etoposide (ETP)-induced deteriorated oocytes show poor maturity, mitochondrial aggregation, and DNA damage. Treatment of NPs not only reduced DNA damage but also improved mitochondrial stability, as evidenced by increased ATP levels and mitochondrial homogeneity. When melatonin was added to the culture medium at the same concentration as that present in NPs, DNA and mitochondrial repair was insignificant due to the half-life of melatonin, whereas DNA repair in damaged oocytes upon multiple treatments with melatonin was similar to that observed with melatonin-loaded NPs. Next, we evaluated whether the oocytes treated with NPs could have cryoprotective abilities during vitrification/thawing. Vitrified-oocytes were stored at -196 °C for 0.25 h (T1) or 0.5 h (T2). After thawing, live oocytes were subjected to in vitro maturation. The NP-treated group showed maturity similar to the control group (77.8% in T1, 72.7% in T2) and the degree of DNA damage was reduced compared to the ETP-induced group (p < 0.05).
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hui Bang Cho
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Hye-Ryoung Kim
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Sujeong Lee
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Kore.
| |
Collapse
|
5
|
Karcz A, Van Soom A, Smits K, Verplancke R, Van Vlierberghe S, Vanfleteren J. Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. LAB ON A CHIP 2022; 22:1852-1875. [PMID: 35510672 DOI: 10.1039/d1lc01160j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical stimulation of gametes and embryos and on-chip manipulation of microdroplets of culture medium serve as promising tools for assisted reproductive technologies (ARTs). Thus far, dielectrophoresis (DEP), electrorotation (ER) and electrowetting on dielectric (EWOD) proved compatible with most laboratory procedures offered by ARTs. Positioning, entrapment and selection of reproductive cells can be achieved with DEP and ER, while EWOD provides the dynamic microenvironment of a developing embryo to better mimic the functions of the oviduct. Furthermore, these techniques are applicable for the assessment of the developmental competence of a mammalian embryo in vitro. Such research paves the way towards the amelioration and full automation of the assisted reproduction methods. This article aims to provide a summary on the recent developments regarding electrically stimulated lab-on-chip devices and their application for the manipulation of gametes and embryos in vitro.
Collapse
Affiliation(s)
- Adriana Karcz
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Campus Sterre, building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
6
|
Di Nisio V, Antonouli S, Damdimopoulou P, Salumets A, Cecconi S. In vivo and in vitro postovulatory aging: when time works against oocyte quality? J Assist Reprod Genet 2022; 39:905-918. [PMID: 35312936 PMCID: PMC9050976 DOI: 10.1007/s10815-022-02418-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/26/2022] Open
Abstract
In mammalian species an optimal fertilization window during which successful fertilization occurs. In the majority of mammals estrus marks ovulation time and coincident with mating, thereby allowing the synchronized meeting in the fallopian tubes, between freshly ejaculated sperm and freshly ovulated oocytes. Conversely, women do not show natural visual signs of ovulation such that fertilization can occur hours later involving an aged oocyte and freshly ejaculated spermatozoa. During this time, the oocyte undergoes a rapid degradation known as “postovulatory aging” (POA). POA may become particularly important in the human-assisted reproductive technologies, as the fertilization of retrieved mature oocytes can be delayed due to increased laboratory workload or because of unforeseeable circumstances, like the delayed availability of semen samples. This paper is an updated review of the consequences of POA, either in vivo or in vitro, on oocyte quality with particular attention to modifications caused by POA on oocyte nuclear, cytoplasmic, genomic, and epigenetic maturation, and embryo development.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden.
| | - Sevastiani Antonouli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia.,Competence Centre On Health Technologies, 50411, Tartu, Estonia
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | | |
Collapse
|