1
|
Esbert M, Reig A, Ballestros A, Seli E. Oocyte maturation defect in women undergoing IVF: contributing factors and effects on mature sibling oocyte outcomes. J Assist Reprod Genet 2025; 42:773-780. [PMID: 39786528 PMCID: PMC11950596 DOI: 10.1007/s10815-024-03353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE This study aimed to identify demographic and clinical factors associated with low maturation rates and to investigate if the rate of immature oocytes impacts the outcomes of mature sibling oocytes. METHODS Women undergoing their first IVF-ICSI cycle between 2018 and 2022 at a fertility clinic were included. Cycles were classified into five groups according to the proportion of Metaphase II stage oocytes (MII): Null (0% MII, n = 46), Poor (1-25% MII, n = 44), Low (26-50% MII, n = 453), Acceptable (51-75% MII, n = 1641), and Optimal (76-100% MII, n = 2642). Demographic characteristics and clinical outcomes were compared between the five groups. In patients with a Null/Poor maturation rate, subsequent cycle outcomes were also evaluated. RESULTS A total of 4826 cycles were included in the study; 69,909 oocytes were recovered, and 53,065 were MIIs (75.9%). The Null group was older, had lower levels of anti-Müllerian hormone (AMH), needed more gonadotropins and days of stimulation, had higher follicle stimulating hormone (FSH) levels on day 3, and had less follicles > 15 mm on the day of trigger. When the outcomes of mature oocytes were compared, fertilization, usable blastocyst, aneuploidy, and life birth rates were comparable among groups. A binary logistic regression model using number of oocytes, paternal age, and trigger type with live birth rate endpoint found no differences between the categories and the base line Poor category. When patients whose maturation rate was Null/Poor, 42 (47.0%) carried out a second cycle; the maturation rate increased (56.9 ± 31.5 vs. 11.6 ± 11.2%, P < 0.0001). CONCLUSION Our data suggest that poor responders are more likely to have low rates of oocyte maturation. The proportion of immature oocytes does not impact the outcomes of mature sibling oocytes. In patients with Null/Poor maturation in their first cycle, the subsequent cycle is often associated with improved maturation rates.
Collapse
Affiliation(s)
- Marga Esbert
- IVIRMA Global Research Alliance, IVI Barcelona, 45 Mallorca, 08017, Barcelona, Spain.
- IVIRMA Global Research Alliance, RMA New Jersey, 140 Allen, Basking Ridge, NJ, 07920, USA.
| | - Andrés Reig
- IVIRMA Global Research Alliance, RMA New Jersey, 140 Allen, Basking Ridge, NJ, 07920, USA
| | - Agustín Ballestros
- IVIRMA Global Research Alliance, IVI Barcelona, 45 Mallorca, 08017, Barcelona, Spain
| | - Emre Seli
- IVIRMA Global Research Alliance, RMA New Jersey, 140 Allen, Basking Ridge, NJ, 07920, USA
- Yale School of Medicine, 200 West Campus Drive Rm 211, Orange, CT, 06477, USA
| |
Collapse
|
2
|
Morato ALC, Verruma CG, Furtado CLM, Dos Reis RM. In vitro maturation of oocytes: what is already known?†. Biol Reprod 2025; 112:18-30. [PMID: 39423281 DOI: 10.1093/biolre/ioae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Assisted reproductive technologies (ARTs) involve the laboratory manipulation of gametes and embryos to help couples with fertility problems become pregnant. One of these procedures, controlled ovarian stimulation, uses pharmacological agents to induce ovarian and follicular maturation in vivo. Despite the effectiveness in achieving pregnancy and live births, some patients may have complications due to over-response to gonadotropins and develop ovarian hyperstimulation syndrome. In vitro maturation (IVM) of oocytes has emerged as a technique to reduce the risk of ovarian hyperstimulation syndrome, particularly in women with polycystic ovary syndrome, and for fertility preservation in women undergoing oncological treatment. Although there are some limitations, primarily due to oocyte quality, recent advances have improved pregnancy success rates and neonatal and infant outcomes. Different terms have been coined to describe variations of IVM, and the technique has evolved with the introduction of hormones to optimize results. In this review, we provide a comprehensive overview of IVM relating hormonal priming, culture system and media, and clinical indications for IVM with its reproductive outcomes during ARTs.
Collapse
Affiliation(s)
- Ana Luiza Camargos Morato
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Graduate Program in Medical Science, Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Postgraduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
3
|
Torkashvand H, Shabani R, Artimani T, Amiri I, Pilehvari S, Torkashvand L, Mehdizadeh R, Mehdizadeh M. Oocyte competence develops: nuclear maturation synchronously with cytoplasm maturation. ZYGOTE 2024; 32:421-428. [PMID: 39552507 DOI: 10.1017/s0967199424000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human oocyte maturation is a lengthy process that takes place over the course of which oocytes gain the inherent ability to support the next developmental stages in a progressive manner. This process includes intricate and distinct events related to nuclear and cytoplasmic maturation. Nuclear maturation includes mostly chromosome segregation, whereas rearrangement of organelles, storage of mRNAs and transcription factors occur during cytoplasmic maturation.Human oocyte maturation, both in vivo and in vitro, occurs through a process that is not yet fully understood. However, it is believed that the second messenger, cyclic adenosine monophosphate (cAMP), plays a pivotal role in the upkeep of the meiotic blocking of the human oocyte. Relatively high levels of cAMP in the human oocyte are required to maintain meiosis blocked, whereas lower levels of cAMP in the oocyte enable meiosis to resume. Oocyte cAMP concentration is controlled by a balance between adenylate cyclase and phosphodiesterases, the enzymes responsible for cAMP generation and breakdown.In addition to nuclear maturation, the female gamete requires a number of complicated structural and biochemical modifications in the cytoplasmic compartment to be able to fertilize normally. According to ultrastructural studies, during the transition from the germinal vesicle stage to metaphase II (MII), several organelles reorganize their positions. The cytoskeletal microfilaments and microtubules found in the cytoplasm facilitate these movements and regulate chromosomal segregation.The aim of this review is to focus on the nuclear and cytoplasmic maturation by investigating the changes that take place in the process of oocytes being competent for development.
Collapse
Affiliation(s)
- Hossein Torkashvand
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebe Artimani
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shamim Pilehvari
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Clinical Research Development Unit of Fatemieh Hospital, Department of Gynecology, Medicine School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Torkashvand
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Mehdizadeh
- School of Dentistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chang CC, Peng M, Tsai LK, Chang CC, Li CJ, Wu CK, Chien CC, Xu J, Nagy ZP, Liu CH, Lu CH, Sung LY. Sperm penetration at the maturing metaphase I stage can trigger oocyte activation in a mouse model. Reprod Biomed Online 2024; 49:104329. [PMID: 39423749 DOI: 10.1016/j.rbmo.2024.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 10/21/2024]
Abstract
RESEARCH QUESTION Can spermatozoa penetrate maturing metaphase I (MI) oocytes, and render subsequent development following conventional IVF in a mouse model? DESIGN ICR mice were used in this study. Metaphase II (MII) cumulus-oocyte complexes (COC) harvested 15 h after injection of human chorionic gonadotrophin (HCG) were used for IVF as the control group (Group 1). In the treatment group (Group 2), maturing MI COC harvested 7 h after HCG injection were used for IVF. Fertilization, pronuclear formation, cleavage, blastocyst formation, DNA methylation status, chromosome number and live birth rates were used to evaluate the developmental dynamics and competency of maturing MI oocytes following conventional IVF. RESULTS Maturing MI COC were fertilized using conventional IVF, and sperm penetration at MI-telophase I triggered oocyte activation. Most embryos resulting from fertilized MI oocytes developed to blastocyst stage during preimplantation development, albeit a substantial proportion of them were triploids due to the absence of the second meiotic division. Some of the embryos derived from fertilization of maturing oocytes were able to implant and gave rise to full-term development. CONCLUSION Maturing MI COC from follicles before ovulation could be used for mouse IVF, and fertilized MI oocytes had high potential for development. Healthy offspring can be generated from maturing MI COC following conventional IVF. MI COC may represent a valuable source of 'usable' biomaterial in assisted reproduction. However, many embryos derived from MI COC via IVF have abnormal chromosome numbers in the mouse model. The implications of these findings for human IVF remain to be investigated.
Collapse
Affiliation(s)
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Jung Li
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Kuan Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Cheng Chien
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Chi-Hong Liu
- Nuwa Fertility Centre, Taiwan, Taipei, Republic of China
| | - Chung-Hao Lu
- Nuwa Fertility Centre, Taiwan, Taipei, Republic of China.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China; Centre for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, Republic of China; Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
5
|
Santos T, Pires-Luís AS, Calado AM, Oliveira E, Cunha M, Silva J, Viana P, Teixeira-da-Silva J, Oliveira C, Barros A, Sá R, Sousa M. Stereological study of organelle distribution in human mature oocytes. Sci Rep 2024; 14:25816. [PMID: 39468218 PMCID: PMC11519492 DOI: 10.1038/s41598-024-76893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
| | - Ana Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - José Teixeira-da-Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
- Service of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, RISE Health Research Network, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Bartolacci A, Busnelli A, Pagliardini L, de Girolamo S, De Santis L, Esposito S, Alteri A, Setti PEL, Papaleo E. Assessing the developmental competence of oocytes matured following rescue in vitro maturation: a systematic review and meta-analysis. J Assist Reprod Genet 2024; 41:1939-1950. [PMID: 39046561 PMCID: PMC11339015 DOI: 10.1007/s10815-024-03211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE To assess the developmental competence of oocytes matured following rescue in vitro maturation (IVM). METHODS PubMed, EmBASE, and SCOPUS were systematically searched for peer-reviewed original papers using relevant keywords and Medical Subject Heading terms. Study quality was assessed using the Newcastle-Ottawa Scale. Odds ratios with a 95% confidence interval were calculated by applying a random effects model. The primary outcomes were fertilization and blastulation rates. Secondary outcomes included abnormal fertilization, cleavage, euploidy, clinical pregnancy, and live-birth rates. RESULT Twenty-four studies were included in the meta-analysis. The oocytes matured following rescue IVM showed significantly reduced fertilization, cleavage, blastulation, and clinical pregnancy rates compared to sibling in vivo-matured oocytes. No significant differences were found for the euploidy and live-birth rates in euploid blastocyst transfer. In poor responders, a reduced fertilization rate was observed using in vitro-matured GV but not with in vitro-matured MI. A reduced cleavage rate in MI matured overnight compared to < 6 incubation hours was found. CONCLUSION Our results showed compromised developmental competence in oocytes matured following rescue IVM. However, in poor responders, rescue IVM could maximize the efficiency of the treatment. Notably, our data suggests using in vitro MI matured within 6 incubation hours. CLINICAL TRIAL REGISTRATION NUMBER CRD42023467232.
Collapse
Affiliation(s)
- Alessandro Bartolacci
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - Andrea Busnelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Pagliardini
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Reproductive Sciences Laboratory, Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Sofia de Girolamo
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lucia De Santis
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Stefania Esposito
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Emanuele Levi Setti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
7
|
Albertini DF. Histories and mysteries underlying meiotic maturation failure in human oocytes. J Assist Reprod Genet 2024; 41:1937-1938. [PMID: 39136903 PMCID: PMC11339244 DOI: 10.1007/s10815-024-03221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
8
|
Li Y, Jin L, Tian W, Yan E, Li Y, Ren X, Guo N. Usable blastocysts developed from in-vitro-matured metaphase I oocytes in preimplantation genetic testing cycles. Reprod Biomed Online 2024; 48:103571. [PMID: 38244346 DOI: 10.1016/j.rbmo.2023.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
RESEARCH QUESTION Are blastocysts derived from in-vitro-matured metaphase I (MI) oocytes less likely to produce usable embryos for transfer compared with those derived from in-vivo-matured oocytes in cycles undergoing preimplantation genetic testing (PGT)? DESIGN The primary outcome was usable blastocyst rate, which was compared between blastocysts derived from in-vitro-matured MI oocytes after ovarian stimulation and from in-vivo-matured oocytes. Logistic regression analysis using generalized estimating equations was used to control for confounders in the analysis of factors that may influence the chance of a blastocyst being usable and in the comparison of embryological outcomes. Student's t-test, Mann-Whitney U test, chi-squared tests or Fisher's exact tests were used to compare clinical and pregnancy outcomes. RESULTS A total of 1810 injected metaphase II (MII) oocytes from 154 PGT cycles involving 154 couples were included in this study. A total of 1577 MII oocytes were in-vivo-matured and 233 were in-vitro-matured MI oocytes. The usable blastocyst rate was similar between the in-vitro-matured MI oocyte group and the in-vivo-matured oocyte group (adjusted RR 0.97, 95% CI 0.40 to 2.34). Three live births were achieved using usable blastocysts derived from in-vitro-matured MI oocytes. CONCLUSIONS If in-vitro-matured MI oocytes can be fertilized and develop into blastocysts, their ability to provide usable embryos for transfer is similar compared with those developed from in-vivo-matured oocytes. These blastocysts could be considered valuable for women with few viable embryos in assisted reproductive technology cycles.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqu Tian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Enqi Yan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China..
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China..
| |
Collapse
|
9
|
Cimadomo D, Cobo A, Galliano D, Fiorentino G, Marconetto A, Zuccotti M, Rienzi L. Oocyte vitrification for fertility preservation is an evolving practice requiring a new mindset: societal, technical, clinical, and basic science-driven evolutions. Fertil Steril 2024:S0015-0282(24)00004-9. [PMID: 38185200 DOI: 10.1016/j.fertnstert.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Infertility is a condition with profound social implications. Indeed, it is not surprising that evolutions in both medicine and society affect the way in vitro fertilization is practiced. The keywords in modern medicine are the four principles, which implicitly involve a constant update of our knowledge and our technologies to fulfill the "prediction" and "personalization" tasks, and a continuous reshaping of our mindset in view of all relevant societal changes to fulfill the "prevention" and "participation" tasks. A worldwide aging population whose life priorities are changing requires that we invest in fertility education, spreading actionable information to allow women and men to make meaningful reproductive choices. Fertility preservation for both medical and nonmedical reasons is still very much overlooked in many countries worldwide, demanding a comprehensive update of our approach, starting from academia and in vitro fertilization laboratories, passing through medical offices, and reaching out to social media. Reproduction medicine should evolve from being a clinical practice to treat a condition to being a holistic approach to guarantee patients' reproductive health and well-being. Oocyte vitrification for fertility preservation is the perfect use case for this transition. This tool is acquiring a new identity to comply with novel indications and social needs, persisting technical challenges, brand-new clinical technologies, and novel revolutions coming from academia. This "views and reviews" piece aims at outlining the advancement of oocyte vitrification from all these tightly connected perspectives.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, IVIRMA Global Research Alliance, Genera, Rome, Italy
| | - Ana Cobo
- IVI, IVIRMA Global Research Alliance, Valencia, Spain
| | | | - Giulia Fiorentino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Anabella Marconetto
- University Institute of Reproductive Medicine, National University of Córdoba, Córdoba, Argentina
| | - Maurizio Zuccotti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, IVIRMA Global Research Alliance, Genera, Rome, Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
10
|
Shani AK, Haham LM, Balakier H, Kuznyetsova I, Bashar S, Day EN, Librach CL. The developmental potential of mature oocytes derived from rescue in vitro maturation. Fertil Steril 2023; 120:860-869. [PMID: 37257719 DOI: 10.1016/j.fertnstert.2023.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To examine the developmental competence of immature oocytes in stimulated cycles, that matured after rescue in vitro maturation (IVM) compared with their sibling in vivo matured oocytes. DESIGN Retrospective cohort study. SETTING IVF clinic. PATIENTS A total of 182 patients underwent 200 controlled ovarian stimulation cycles with intracytoplasmic sperm injection cycles in which immature oocytes were retrieved and at least one mature oocyte was obtained through rescue IVM. INTERVENTION In vitro culture of immature germinal vesicle (GV) and metaphase I (MI) oocytes, retrieved in stimulated cycles. MAIN OUTCOME MEASURES Fertilization rate, cleavage rate, blastulation rate, ploidy of embryos evaluated using preimplantation genetic testing for aneuploidy, morphokinetic parameters and pregnancy outcomes. RESULTS In total, 2,288 oocytes were retrieved from 200 cycles. After denudation, 1,056 of the oocytes (46% ± 16%) were classified as metaphase II (MII). A total of 333/375 (89%) of MI oocytes and 292/540 (54%) of GV oocytes matured overnight and underwent intracytoplasmic sperm injection. The fertilization rates of matured oocytes from MI rescue IVM (R-MI) and from GV rescue IVM (R-GV) were comparable with those of their sibling MII oocytes (71% vs. 66%; 66% vs. 63%, respectively). Early cleavage rates (80% ± 35% vs. 92% ± 20%; 80% ± 42% vs. 95% ± 28%, respectively) and blastulation rates (32 ± 40% vs. 62 ± 33%; 24 ± 37% vs. 60 ± 35%, respectively) were significantly decreased in rescue IVM matured oocytes (R-oocytes)-derived zygotes, but the blastocyst (BL) euploidy rate and "good quality" BL rate were comparable with those of MII sibling-derived embryos. In addition, rescue IVM embryos showed significantly higher levels of multinucleation at the 2- and 4-cell stages, as well as higher rates of zygote direct cleavage from one to 3 to 4 cells. Overall, 21 transfers of rescue IVM embryos resulted in 3 healthy live births. CONCLUSIONS For patients with a low maturation rate and/or low numbers of mature oocytes at retrieval, rescue IVM may contribute more competent oocytes and additional viable BLs for transfer from the same stimulation cycle, maximizing the chances for pregnancy and live birth.
Collapse
Affiliation(s)
- Adi Kuperman Shani
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lilach Marom Haham
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Iryna Kuznyetsova
- CReATe Fertility Centre, Toronto, Ontario, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Erin N Day
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Ahmad MF, Elias MH, Mat Jin N, Abu MA, Syafruddin SE, Zainuddin AA, Suzuki N, Abdul Karim AK. The spectrum of in vitro maturation in clinical practice: the current insight. Front Endocrinol (Lausanne) 2023; 14:1192180. [PMID: 37455921 PMCID: PMC10338224 DOI: 10.3389/fendo.2023.1192180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
In vitro oocyte maturation (IVM) has been used worldwide. Despite the long-term implementation, the uptake of this procedure to complement current in vitro fertilization (IVF) remains low. The main reason is likely due to the non-synchronization of protocol and definition criteria, leading to difficulty in collective proper outcome data worldwide and, thus, lack of understanding of the exact IVM procedure. The review aims to consolidate the current clinical practice of IVM by dissecting relevant publications to be tailored for a current spectrum of clinical practice. Nevertheless, the background theories of oocyte maturation were also explored to provide a comprehensive understanding of the basis of IVM theories. Additional discussion of other potential uses of IVM in the future, such as in ovarian tissue cryopreservation known as OTO-IVM for fertility preservation and among women with diminished ovarian reserve, was also explored. Otherwise, future collaboration among all IVM centers is paramount for better collection of clinical data to provide valid recommendations for IVM in clinical practice, especially in molecular integrity and possible DNA alteration if present for IVM offspring outcome safety purposes.
Collapse
Affiliation(s)
- Mohd Faizal Ahmad
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Marjanu Hikmah Elias
- Faculty of Medicine Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Norazilah Mat Jin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh Selangor, Malaysia
| | - Muhammad Azrai Abu
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Nao Suzuki
- Department of Obstetrics Gynecology, St Marianna School of Medicine, Kawasaki, Japan
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Moon JH, Zhao Q, Zhang J, Reddy V, Han J, Cheng Y, Zhang N, Dasig J, Nel-Themaat L, Behr B, Yu B. The developmental competence of human metaphase I oocytes with delayed maturation in vitro. Fertil Steril 2023; 119:690-696. [PMID: 36567036 PMCID: PMC10436753 DOI: 10.1016/j.fertnstert.2022.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate whether metaphase I (MI) oocytes completing maturation in vitro to metaphase II ("MI-MII oocytes") have similar developmental competence as the sibling metaphase II (MII) oocytes that reached maturity in vivo. DESIGN Retrospective cohort study. SETTING Academic medical center. PATIENT(S) A total of 1,124 intracytoplasmic sperm injection (ICSI) cycles from 800 patients at a single academic center between April 2016 and December 2020 with at least 1 MII oocyte immediately after retrieval and at least 1 sibling "MI-MII oocyte" that was retrieved as MI and matured to MII in culture before ICSI were included in the study. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) A total of 7,865 MII and 2,369 sibling MI-MII oocytes retrieved from the same individuals were compared for the fertilization and blastocyst formation rates. For patients who underwent single euploid blastocyst transfers (n = 406), the clinical pregnancy, spontaneous pregnancy loss, and live birth rates were compared between the 2 groups. RESULT(S) The fertilization rate was significantly higher in MII oocytes than in delayed matured MI-MII oocytes (75.9% vs. 56.1%). Similarly, the blastocyst formation rate was higher in embryos derived from MII oocytes than in those from MI-MII oocytes (53.8% vs. 23.9%). The percentage of euploid embryos derived from MII oocytes was significantly higher than that of those from MI-MII oocytes (49.2% vs. 34.7%). Paired comparison of sibling oocytes within the same cycle showed higher developmental competence of the MII oocytes than that of MI-MII oocytes. However, the pregnancy, spontaneous pregnancy loss, and live birth rates after a single euploid blastocyst transfer showed no statistically significant difference between the 2 groups (MII vs. MI-MII group, 65.7% vs. 74.1%, 6.4% vs. 5.0%, and 61.5% vs. 70.0%, respectively). CONCLUSION(S) Compared with oocytes that matured in vivo and were retrieved as MII, the oocytes that were retrieved as MI and matured to MII in vitro before ICSI showed lower developmental competence, including lower fertilization, blastocyst formation, and euploidy rates. However, euploid blastocysts from either cohort resulted in similar live birth rates, indicating that the MI oocytes with delayed maturation can still be useful even though the overall developmental competence was lower than that of their in vivo matured counterparts.
Collapse
Affiliation(s)
- Jeong Hee Moon
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Qianying Zhao
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Jiaqi Zhang
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Vik Reddy
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Jinnou Han
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Yuan Cheng
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Nan Zhang
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Jennifer Dasig
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Liesl Nel-Themaat
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California
| | - Barry Behr
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Bo Yu
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California; Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
13
|
Yang ZY, Ye M, Xing YX, Xie QG, Zhou JH, Qi XR, Kee K, Chian RC. Changes in the Mitochondria-Related Nuclear Gene Expression Profile during Human Oocyte Maturation by the IVM Technique. Cells 2022; 11:297. [PMID: 35053413 PMCID: PMC8774259 DOI: 10.3390/cells11020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
To address which mitochondria-related nuclear differentially expressed genes (DEGs) and related pathways are altered during human oocyte maturation, single-cell analysis was performed in three oocyte states: in vivo matured (M-IVO), in vitro matured (M-IVT), and failed to mature in vitro (IM-IVT). There were 691 DEGs and 16 mitochondria-related DEGs in the comparison of M-IVT vs. IM-IVT oocytes, and 2281 DEGs and 160 mitochondria-related DEGs in the comparison of M-IVT vs. M-IVO oocytes, respectively. The GO and KEGG analyses showed that most of them were involved in pathways such as oxidative phosphorylation, pyruvate metabolism, peroxisome, and amino acid metabolism, i.e., valine, leucine, isoleucine, glycine, serine, and threonine metabolism or degradation. During the progress of oocyte maturation, the metabolic pathway, which derives the main source of ATP, shifted from glucose metabolism to pyruvate and fatty acid oxidation in order to maintain a low level of damaging reactive oxygen species (ROS) production. Although the immature oocytes could be cultured to a mature stage by an in vitro technique (IVM), there were still some differences in mitochondria-related regulations, which showed that the mitochondria were regulated by nuclear genes to compensate for their developmental needs. Meanwhile, the results indicated that the current IVM culture medium should be optimized to compensate for the special need for further development according to this disclosure, as it was a latent strategy to improve the effectiveness of the IVM procedure.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Min Ye
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ya-Xin Xing
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| | - Qi-Gui Xie
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Jian-Hong Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Xin-Rui Qi
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ri-Cheng Chian
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| |
Collapse
|