1
|
Fatima S, Pandey P, Sharma SK, Priya S. Structural-functional relevance of DNAJBs in protein aggregation and associated neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141074. [PMID: 40254275 DOI: 10.1016/j.bbapap.2025.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
DNAJ proteins, also known as HSP40s, are co-chaperones that regulate the multifunctionality of HSP70s in maintaining cellular protein homeostasis. The heterogeneous family of DNAJ co-chaperones is classified into three classes (A, B and C), where structural diversity within the class defines their specific functions. Among three classes, the DNAJB class of co-chaperones are associated with cellular compartment-specific protein folding, disaggregation and degradation of proteins and enables effective targeting of a broad spectrum of aggregation-prone substrate proteins. The structural divergence of DNAJBs is critical for regulating disaggregation and degradation functions through specific interactions with HSP70 and substrate proteins. While the role of DNAJBs in maintaining protein homeostasis is valuable in addressing protein aggregation in neurodegenerative diseases, a limited understanding of their mechanisms and cellular functions beyond co-chaperones restricts their therapeutic applications. In this review, the mechanism of DNAJBs regulating aggregation of pathogenic proteins such as α-synuclein, tau, amyloid-β, and huntingtin are discussed. Emphasis on the selectivity of DNAJBs towards folding, disaggregation and degradation functions of HSP70, substrate selection and involvement of different structural regions are explained to provide a structural and functional understanding of DNAJB proteins. Mutations in different DNAJBs linked with several proteins aggregation-related neuronal and neuromuscular diseases are discussed. The fundamental understanding of DNAJB diversity and functionality can assist future interventions for regulating protein homeostasis and managing associated diseases.
Collapse
Affiliation(s)
- Siraj Fatima
- Systems Toxicology Group, FEST Division, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Priyanka Pandey
- Systems Toxicology Group, FEST Division, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sandeep K Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Food Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology Group, FEST Division, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Yang M, Hussain HMJ, Khan M, Muhammad Z, Zhou J, Ma A, Huang X, Ye J, Chen M, Zhi A, Liu T, Khan R, Asim A, Shah W, Zeb A, Ahmad N, Zhang H, Xu B, Ma H, Shi Q, Shi B. Deficiency in DNAH12 causes male infertility by impairing DNAH1 and DNALI1 recruitment in humans and mice. eLife 2025; 13:RP100350. [PMID: 40146200 PMCID: PMC11949491 DOI: 10.7554/elife.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.
Collapse
Affiliation(s)
- Menglei Yang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hafiz Muhammad Jafar Hussain
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Manan Khan
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Zubair Muhammad
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ao Ma
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xiongheng Huang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jingwei Ye
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Min Chen
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Aoran Zhi
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Tao Liu
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ranjha Khan
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ali Asim
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Wasim Shah
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Aurang Zeb
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Nisar Ahmad
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Huan Zhang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Bo Xu
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hui Ma
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Qinghua Shi
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Baolu Shi
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Hu T, Tang X, Ruan T, Long S, Liu G, Ma J, Li X, Zhang R, Huang G, Shen Y, Lin T. IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal sperm morphology in humans and mice. Cell Commun Signal 2025; 23:41. [PMID: 39849482 PMCID: PMC11755891 DOI: 10.1186/s12964-025-02043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear. METHODS We recruited a cohort of 323 infertile males with ASZ between August 2019 and June 2024. Genetic mutations were identified by whole-exome sequencing. Computer-aided sperm analysis, Papanicolaou staining, and electron microscopy were applied to evaluate the motility, morphology, and ultrastructure of spermatozoa, respectively. Protein mass spectrometry, western blotting, and bioinformatic analyses were performed to identify critical components of mammalian RS1 to model its structure and explore the pathological mechanism of IQUB deficiency. Intracytoplasmic sperm injection (ICSI) was applied for the patient and Iqub-/- mice. RESULTS We identified a novel homozygous IQUB mutation [c.842del (p.L281Pfs*28)] in an ASZ male with normal sperm morphology (ANM), which resulted in the complete loss of IQUB in sperm flagella. Deficiency of RS1, but not RS2 or RS3, was observed in both IQUB842del patient and Iqub-/- mice, and resulted in the reduction of sperm kinetic parameters, indicating the critical role of IQUB in regulating mammalian RS1 assembly and sperm flagellar beat. More importantly, we identified twelve critical components of RS1 in humans and mice, among which RSPH3, RSPH6A, RSPH9 and DYDC1 constituting the head, DYDC1, NME5, DNAJB13 and PPIL6 assembling into the head-neck complex, AK8, ROPN1L, RSPH14, DYNLL1, and IQUB forming the stalk of RS1. Along with the RS1 defect, the IQUB deficiency caused significant down-regulation of the inner dynein arms of DNAH7 and DNAH12, highlighting their nearby location with RS1. Finally, ICSI can effectively resolve the male infertility caused by IQUB genetic defects. CONCLUSIONS We demonstrate that IQUB may serve as an adapter for sperm flagellar RS1 in both humans and mice and consolidated the causal relationship between IQUB genetic mutations and ANM, further enriching the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Tiechao Ruan
- Department of Obstetrics/Gynecology, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Guicen Liu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Jing Ma
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xueqi Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Ruoxuan Zhang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Ying Shen
- Department of Obstetrics/Gynecology, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
4
|
Arora M, Mehta P, Sethi S, Anifandis G, Samara M, Singh R. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 2024; 41:2877-2929. [PMID: 39417902 PMCID: PMC11621285 DOI: 10.1007/s10815-024-03274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia. METHODS We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout. RESULTS Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF). CONCLUSIONS Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.
Collapse
Affiliation(s)
- Manvi Arora
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Mary Samara
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Bai S, Hu M, Yu L, Chen L, Zhou J, Wu L, Xu B, Jiang X, Zhang X, Tong X, Yue Q. DNAJB7 is dispensable for male fertility in mice. Reprod Biol Endocrinol 2023; 21:32. [PMID: 37004113 PMCID: PMC10064739 DOI: 10.1186/s12958-023-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND DNAJBs are highly conserved proteins that are involved in various biological processes. Although several DNAJBs are highly expressed in the testis, the function of DNAJB7 in spermatogenesis and male fertility remains unclear. METHODS To identify the role of DNAJB7 in the male reproduction process, Dnajb7-deficient mice were generated by the CRISPR/Cas9-mediated genome editing system. Histological and immunofluorescence assays were performed to analyze the phenotype of the Dnajb7 mutants. RESULTS DNAJB7 is specifically expressed in haploid germ cells. Dnajb7 knockout mice are fertile and do not have any detectable defects in Sertoli cells, spermatogonia, meiotic and postmeiotic cells, indicating that DNAJB7 is not essential for spermatogenesis. CONCLUSIONS Our findings suggest that DNAJB7 is dispensable for male fertility in mice, which could prevent duplicative work by other groups.
Collapse
Affiliation(s)
- Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Meihong Hu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China
| | - Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China
| | - Limin Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xiaohua Jiang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xindong Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China.
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Qiuling Yue
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China.
| |
Collapse
|