1
|
Meng P, Brock A, Wang X, Xu Y, McMurtrie J, Xu J. Competition of Hydrogen Bonds and Coordinate Bonds Induces a Reversible Crystal Transformation. Inorg Chem 2022; 61:2086-2092. [PMID: 35050601 DOI: 10.1021/acs.inorgchem.1c03291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving reversible molecular crystal transformation between coordinate aggregates and hydrogen bonded assemblies has been a challenging task because coordinate bonds are generally much stronger than hydrogen bonds. Recently, we have reported the incorporation of silver ions into the cyanuric acid-melamine (CAM) network, resulting in the formation of a 1D coordination polymer (crystal 1) through forming the κ1N-Ag-κ2N coordination bonds. In this work, we find crystal 1 will undergo reversible transformation to hydrogen bonded coordinate units (crystal 2) through the breaking of coordinate chains and then the addition of CAM hydrogen bonding motifs into the framework. Crystal 2 presents a pseudohexagonal arrangement comprised of the κ1N-Ag-κ2N units connected by two sets of the triple hydrogen bonds, which extends two-dimensionally and stacks into a layer-structured crystal. Light was shed on the tautomerization of CA and M ligands associated with the crystal transformations using single crystal X-ray diffraction and infrared spectroscopy by analyzing the bond lengths and vibrations. We also highlight that photoluminescence can be a useful tool to probe the tautomer conversions of conjugated molecules. Furthermore, crystal 1 demonstrates high flexibility and can be bent over 180° and recover to its original shape after stress release. Crystal 2, on the contrary, is brittle and shows distinct mechanical anisotropy along different crystal orientations, as unveiled by nanoindentation measurements. The elastic modulus is well correlated with the chemical bonding strength along each orientation, and it is noteworthy that the contribution of the triple hydrogen bonds is comparable to that of the coordination bonds.
Collapse
Affiliation(s)
- Peng Meng
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Aidan Brock
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Xiaodong Wang
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - John McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
2
|
Levine DS, Watson MA, Jacobson LD, Dickerson CE, Yu HS, Bochevarov AD. Pattern-free generation and quantum mechanical scoring of ring-chain tautomers. J Comput Aided Mol Des 2020; 35:417-431. [PMID: 32830300 DOI: 10.1007/s10822-020-00334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
Abstract
In contrast to the computational generation of conventional tautomers, the analogous operation that would produce ring-chain tautomers is rarely available in cheminformatics codes. This is partly due to the perceived unimportance of ring-chain tautomerism and partly because specialized algorithms are required to realize the non-local proton transfers that occur during ring-chain rearrangement. Nevertheless, for some types of organic compounds, including sugars, warfarin analogs, fluorescein dyes and some drug-like compounds, ring-chain tautomerism cannot be ignored. In this work, a novel ring-chain tautomer generation algorithm is presented. It differs from previously proposed solutions in that it does not rely on hard-coded patterns of proton migrations and bond rearrangements, and should therefore be more general and maintainable. We deploy this algorithm as part of a workflow which provides an automated solution for tautomer generation and scoring. The workflow identifies protonatable and deprotonatable sites in the molecule using a previously described approach based on rapid micro-pKa prediction. These data are used to distribute the active protons among the protonatable sites exhaustively, at which point alternate resonance structures are considered to obtain pairs of atoms with opposite formal charge. These pairs are connected with a single bond and a 3D undistorted geometry is generated. The scoring of the generated tautomers is performed with a subsequent density functional theory calculation employing an implicit solvent model. We demonstrate the performance of our workflow on several types of organic molecules known to exist in ring-chain tautomeric equilibria in solution. In particular, we show that some ring-chain tautomers not found using previously published algorithms are successfully located by ours.
Collapse
Affiliation(s)
- Daniel S Levine
- Schrödinger, Inc., 120 West 45th St, New York, NY, 10036, USA
| | - Mark A Watson
- Schrödinger, Inc., 120 West 45th St, New York, NY, 10036, USA
| | - Leif D Jacobson
- Schrödinger, Inc., 120 West 45th St, New York, NY, 10036, USA.,Schrödinger, Inc., Suite 1300, 101 SW Main Street, Portland, OR, 97204, USA
| | - Claire E Dickerson
- Schrödinger, Inc., 120 West 45th St, New York, NY, 10036, USA.,College of Chemistry & Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Haoyu S Yu
- Schrödinger, Inc., 120 West 45th St, New York, NY, 10036, USA
| | | |
Collapse
|
3
|
Affiliation(s)
- Oya Wahl
- Drug Discovery Chemistry − Scientific Computing, Idorsia Pharmaceuticals, 4123 − Allschwil, Switzerland
| | - Thomas Sander
- Drug Discovery Chemistry − Scientific Computing, Idorsia Pharmaceuticals, 4123 − Allschwil, Switzerland
| |
Collapse
|
4
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
5
|
Abstract
Solutions of organic molecules containing one or more heterocycles with conjugated bonds may exist as a mixture of tautomers, but typically only a few of them are significantly populated even though the potential number grows combinatorially with the number of protonation and deprotonation sites. Generating the most stable tautomers from a given input structure is an important and challenging task, and numerous algorithms to tackle it have been proposed in the literature. This work describes a novel approach for tautomer prediction that involves the combined use of molecular mechanics, semiempirical quantum chemistry, and density functional theory. The key idea in our method is to identify the protonation and deprotonation sites using estimated micro-p Ka's for every atom in the molecule as well as in its nearest protonated and deprotonated forms. To generate tautomers in a systematic way with minimal bias, we then consider the full set of tautomers that arise from the combinatorial distribution of all such mobile protons among all protonatable sites, with efficient postprocessing to screen away high-energy species. To estimate the micro-p Ka's, we present a new method designed for the current task, but we emphasize that any alternative method can be used in conjunction with our basic algorithm. Our approach is therefore grounded in the computational prediction of physical properties in aqueous solution, in contrast to other approaches that may rely on the use of hard-coded rules of proton distribution, previously observed tautomerization patterns from a known chemical space, or human input. We present examples of the application of our algorithm to organic and drug-like molecules, with a focus on novel structures where traditional methods are expected to perform worse.
Collapse
Affiliation(s)
- Mark A Watson
- Schrödinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Haoyu S Yu
- Schrödinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| | - Art D Bochevarov
- Schrödinger, Inc. , 120 West 45th Street , New York , New York 10036 , United States
| |
Collapse
|
6
|
Experimental and pK a prediction aspects of tautomerism of drug-like molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:59-64. [PMID: 30103864 DOI: 10.1016/j.ddtec.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Molecules that can tautomerize are a challenge to scientists because one must consider the possible tautomers in most tasks involving chemical structures: for example, searching databases, interpreting experimental property measurements, calculating properties, virtual screening, and analyzing structure-bioactivity relationships. The challenge in interpreting property measurements such as pKa values feeds into the general lack of extensive information not only of the relative tautomer stability in water but also the properties of the individual tautomers. This lack of information results in the lack of reliability of computational predictions of tautomer stability or properties. In spite of these problems, pKa calculations are reliable enough that they can be used to filter out high-energy tautomers from databases used for virtual screening. Continuous improvements in both pKa prediction software and theoretical calculations promise further improvements in solving the challenges of tautomers. The expected availability of high-resolution structures of many more tautomer-protein complexes will help guide the selection of the bioactive tautomer when the structure of the complex is not known.
Collapse
|
7
|
Mandal A, Patel BK. Metal Ion Directed Tautomeric Polymorphism in a Hydrazonamide/Hydrozonate System. ChemistrySelect 2017. [DOI: 10.1002/slct.201601432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arkalekha Mandal
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati-781039 Assam India, Phone: +91-9954090963
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati-781039 Assam India, Phone: +91-9954090963
| |
Collapse
|
8
|
|
9
|
Guasch L, Peach ML, Nicklaus MC. Tautomerism of Warfarin: Combined Chemoinformatics, Quantum Chemical, and NMR Investigation. J Org Chem 2015; 80:9900-9. [PMID: 26372257 PMCID: PMC7724503 DOI: 10.1021/acs.joc.5b01370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Warfarin, an important anticoagulant drug, can exist in solution in 40 distinct tautomeric forms through both prototropic tautomerism and ring-chain tautomerism. We have investigated all warfarin tautomers with computational and NMR approaches. Relative energies calculated at the B3LYP/6-311G++(d,p) level of theory indicate that the 4-hydroxycoumarin cyclic hemiketal tautomer is the most stable tautomer in aqueous solution, followed by the 4-hydroxycoumarin open-chain tautomer. This is in agreement with our NMR experiments where the spectral assignments indicate that warfarin exists mainly as a mixture of cyclic hemiketal diastereomers, with an open-chain tautomer as a minor component. We present a diagram of the interconversion of warfarin created taking into account the calculated equilibrium constants (pK(T)) for all tautomeric reactions. These findings help with gaining further understanding of proton transfer and ring closure tautomerization processes. We also discuss the results in the context of chemoinformatics rules for handling tautomerism.
Collapse
Affiliation(s)
- Laura Guasch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Megan L. Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
10
|
Detection of tautomer proportions of dimedone in solution: a new approach based on theoretical and FT-IR viewpoint. J Comput Aided Mol Des 2013; 27:681-8. [DOI: 10.1007/s10822-013-9669-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
|
11
|
Structure of NH-benzazoles (1H-benzimidazoles, 1H- and 2H-indazoles, 1H- and 2H-benzotriazoles). Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1237-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Epa K, Aakeröy CB, Desper J, Rayat S, Chandra KL, Cruz-Cabeza AJ. Controlling molecular tautomerism through supramolecular selectivity. Chem Commun (Camb) 2013; 49:7929-31. [DOI: 10.1039/c3cc43935f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Cruz-Cabeza AJ, Groom CR. Identification, classification and relative stability of tautomers in the cambridge structural database. CrystEngComm 2011. [DOI: 10.1039/c0ce00123f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
pK(a) based protonation states and microspecies for protein-ligand docking. J Comput Aided Mol Des 2010; 24:935-42. [PMID: 20882397 DOI: 10.1007/s10822-010-9385-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
In this paper we present our reworked approach to generate ligand protonation states with our structure preparation tool SPORES (Structure PrOtonation and REcognition System). SPORES can be used for the preprocessing of proteins and protein-ligand complexes as e.g. taken from the Protein Data Bank as well as for the setup of 3D ligand databases. It automatically assigns atom and bond types, generates different protonation, tautomeric states as well as different stereoisomers. In the revised version, pKa calculations with the ChemAxon software MARVIN are used either to determine the likeliness of a combinatorial generated protonation state or to determine the titrable atoms used in the combinatorial approach. Additionally, the MARVIN software is used to predict microspecies distributions of ligand molecules. Docking studies were performed with our recently introduced program PLANTS (Protein-Ligand ANT System) on all protomers resulting from the three different selection methods for the well established CCDC/ASTEX clean data set demonstrating the usefulness of especially the latter approach.
Collapse
|
15
|
Warr WA. Tautomerism in chemical information management systems. J Comput Aided Mol Des 2010; 24:497-520. [PMID: 20372974 DOI: 10.1007/s10822-010-9338-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/16/2010] [Indexed: 12/01/2022]
Abstract
Tautomerism has an impact on many of the processes in chemical information management systems including novelty checking during registration into chemical structure databases; storage of structures; exact and substructure searching in chemical structure databases; and depiction of structures retrieved by a search. The approaches taken by 27 different software vendors and database producers are compared. It is hoped that this comparison will act as a discussion document that could ultimately improve databases and software for researchers in the future.
Collapse
|