1
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Hernández González JE, Hernández Alvarez L, Leite VBP, Pascutti PG. Water Bridges Play a Key Role in Affinity and Selectivity for Malarial Protease Falcipain-2. J Chem Inf Model 2020; 60:5499-5512. [PMID: 32634311 DOI: 10.1021/acs.jcim.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Falcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of Plasmodium falciparum. Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth in vitro and no cytotoxicity against human cell lines. However, the structural determinants underlying the selectivity of the 3Pyr-containing nitriles for FP-2 remain unknown. In this work, we conduct a thorough computational study combining MD simulations and free energy calculations to decipher the bases of the selectivity of the aforementioned nitriles. Our results reveal that water bridges involving the nitrogen and one carboxyl oxygen of I85 and D234 of FP-2, respectively, and the nitrogen of the neutral 3Pyr moiety, which are either less prevalent or nonexistent in the other complexes, explain the experimental activity profiles. The presence of crystallographic waters close to the bridging water positions in the studied proteases strongly supports the occurrence of such interactions. Overall, our findings suggest that selective FP-2 inhibitors can be designed by promoting water bridge formation at the bottom of the S2 subsite and/or by introducing complementary groups that displace the bridging water.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lilian Hernández Alvarez
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil.,Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor B P Leite
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
3
|
Alberca LN, Chuguransky SR, Álvarez CL, Talevi A, Salas-Sarduy E. In silico Guided Drug Repurposing: Discovery of New Competitive and Non-competitive Inhibitors of Falcipain-2. Front Chem 2019; 7:534. [PMID: 31448257 PMCID: PMC6691349 DOI: 10.3389/fchem.2019.00534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is among the leading causes of death worldwide. The emergence of Plasmodium falciparum resistant strains with reduced sensitivity to the first line combination therapy and suboptimal responses to insecticides used for Anopheles vector management have led to renewed interest in novel therapeutic options. Here, we report the development and validation of an ensemble of ligand-based computational models capable of identifying falcipain-2 inhibitors, and their subsequent application in the virtual screening of DrugBank and Sweetlead libraries. Among four hits submitted to enzymatic assays, two (odanacatib, an abandoned investigational treatment for osteoporosis and bone metastasis, and the antibiotic methacycline) confirmed inhibitory effects on falcipain-2, with Ki of 98.2 nM and 84.4 μM. Interestingly, Methacycline proved to be a non-competitive inhibitor (α = 1.42) of falcipain-2. The effects of both hits on falcipain-2 hemoglobinase activity and on the development of P. falciparum were also studied.
Collapse
Affiliation(s)
- Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sara R Chuguransky
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cora L Álvarez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Farmacia y Bioquímica, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde", Universidad Nacional de San Martín, CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hernández González JE, Hernández Alvarez L, Pascutti PG, Valiente PA. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure-activity relationships. Proteins 2017; 85:1666-1683. [DOI: 10.1002/prot.25322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| | - Lilian Hernández Alvarez
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Dinâmica e Modelagem Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão; Rio de Janeiro CEP 21941-902 Brazil
| | - Pedro A. Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| |
Collapse
|
5
|
Musyoka TM, Kanzi AM, Lobb KA, Bishop ÖT. Analysis of non-peptidic compounds as potential malarial inhibitors against Plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn 2016; 34:2084-101. [PMID: 26471975 PMCID: PMC5035544 DOI: 10.1080/07391102.2015.1108231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Falcipain-2 (FP-2) and falcipain-3 (FP-3), haemoglobin-degrading enzymes in Plasmodium falciparum, are validated drug targets for the development of effective inhibitors against malaria. However, no commercial drug-targeting falcipains has been developed despite their central role in the life cycle of the parasites. In this work, in silico approaches are used to identify key structural elements that control the binding and selectivity of a diverse set of non-peptidic compounds onto FP-2, FP-3 and homologues from other Plasmodium species as well as human cathepsins. Hotspot residues and the underlying non-covalent interactions, important for the binding of ligands, are identified by interaction fingerprint analysis between the proteases and 2-cyanopyridine derivatives (best hits). It is observed that the size and chemical type of substituent groups within 2-cyanopyridine derivatives determine the strength of protein-ligand interactions. This research presents novel results that can further be exploited in the structure-based molecular-guided design of more potent antimalarial drugs.
Collapse
Affiliation(s)
- Thommas M. Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Aquillah M. Kanzi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Kevin A. Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Pérez B, Antunes S, Gonçalves LM, Domingos A, Gomes JRB, Gomes P, Teixeira C. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies. J Comput Aided Mol Des 2013; 27:823-35. [DOI: 10.1007/s10822-013-9682-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022]
|
7
|
Pérez BC, Teixeira C, Figueiras M, Gut J, Rosenthal PJ, Gomes JRB, Gomes P. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials. Eur J Med Chem 2012; 54:887-99. [PMID: 22683112 DOI: 10.1016/j.ejmech.2012.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 12/25/2022]
Abstract
A series of cinnamic acid/4-aminoquinoline conjugates conceived to link, through a proper retro-enantio dipeptide, a heterocyclic core known to prevent hemozoin formation, to a trans-cinnamic acid motif capable of inhibiting enzyme catalytic Cys residues, were synthesized as potential dual-action antimalarials. The effect of amino acid configuration and the absence of the dipeptide spacer were also assessed. The replacement of the D-amino acids by their natural L counterparts led to a decrease in both anti-plasmodial and falcipain-inhibitory activity, suggesting that the former are preferable. Molecules with such spacer were active against blood-stage Plasmodium falciparum, in vitro, and hemozoin formation, implying that the dipeptide has a key role in mediating these two activities. In turn, compounds without spacer were better falcipain-2 inhibitors, likely because these compounds are smaller and have their vinyl bonds in closer vicinity to the catalytic Cys, as suggested by molecular modeling calculations. These novel conjugates constitute promising leads for the development of new antiplasmodials targeted at blood-stage malaria parasites.
Collapse
Affiliation(s)
- Bianca C Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|