1
|
Bailly C, Bedart C, Vergoten G. A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules. In Silico Pharmacol 2024; 12:24. [PMID: 38584777 PMCID: PMC10997574 DOI: 10.1007/s40203-024-00203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00203-6.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, Wasquehal, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Corentin Bedart
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| | - Gérard Vergoten
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| |
Collapse
|
2
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
3
|
Jabin A, Uddin MF, Al Azad S, Rahman A, Tabassum F, Sarker P, Morshed AKMH, Rahman S, Raisa FF, Sakib MR, Olive AH, Islam T, Tahsin R, Ahmed SZ, Biswas P, Habiba MU, Siddiquy M, Jafary M. Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: a combined in silico and in vivo study. In Silico Pharmacol 2023; 11:8. [PMID: 36999133 PMCID: PMC10052254 DOI: 10.1007/s40203-023-00144-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/11/2023] [Indexed: 03/31/2023] Open
Abstract
HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine development programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic potentiality of α, β, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in the DMN-induced mice model, where β-amyrin scored the most significant values in all aspects.
Collapse
Affiliation(s)
- Anika Jabin
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Mohammad Fahim Uddin
- grid.413273.00000 0001 0574 8737College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Salauddin Al Azad
- grid.258151.a0000 0001 0708 1323Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu Province People’s Republic of China
| | - Ashfaque Rahman
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Fawzia Tabassum
- grid.412506.40000 0001 0689 2212Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Pritthy Sarker
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - A K M Helal Morshed
- grid.207374.50000 0001 2189 3846Pathology and Pathophysiology Major, Academy of Medical Science, Zhengzhou University, Zhengzhou City, 450001 Henan Province People’s Republic of China
| | - Samiur Rahman
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Fatima Fairuz Raisa
- grid.52681.380000 0001 0746 8691Department of Electrical and Electronic Engineering, Brac University, Dhaka, 1212 Bangladesh
| | - Musfiqur Rahman Sakib
- grid.449329.10000 0004 4683 9733Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Abeer Hasan Olive
- grid.442996.40000 0004 0451 6987Department of Pharmacy, East West University, Dhaka, 1212 Bangladesh
| | - Tabassum Islam
- grid.442996.40000 0004 0451 6987Department of Computer Science and Engineering, East West University, Dhaka, 1212 Bangladesh
| | - Ramisha Tahsin
- grid.443020.10000 0001 2295 3329Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| | - Shahlaa Zernaz Ahmed
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Mst. Umme Habiba
- Data Science Research Unit, RPG Interface Lab, Jashore, 7400 Bangladesh
| | - Mahbuba Siddiquy
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu Province People’s Republic of China
| | - Maryam Jafary
- grid.411705.60000 0001 0166 0922Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, 1416634793 Iran
| |
Collapse
|
4
|
Cunha ES, Sfriso P, Rojas AL, Roversi P, Hospital A, Orozco M, Abrescia NG. Mechanism of Structural Tuning of the Hepatitis C Virus Human Cellular Receptor CD81 Large Extracellular Loop. Structure 2017; 25:53-65. [DOI: 10.1016/j.str.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
|