1
|
Touzeau J, Seydou M, Maurel F, Tallet L, Mutschler A, Lavalle P, Barbault F. Theoretical and Experimental Elucidation of the Adsorption Process of a Bioinspired Peptide on Mineral Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11374-11385. [PMID: 34516122 DOI: 10.1021/acs.langmuir.1c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic materials used for biomedical applications such as implants generally induce the adsorption of proteins on their surface. To control this phenomenon, the bioinspired peptidomimetic polymer 1 (PMP1), which aims to reproduce the adhesion of mussel foot proteins, is commonly used to graft specific proteins on various surfaces and to regulate the interfacial mechanism. To date and despite its wide application, the elucidation at the atomic scale of the PMP1 mechanism of adsorption on surfaces is still unknown. The purpose of the present work was thus to unravel this process through experimental and computational investigations of adsorption of PMP1 on gold, TiO2, and SiO2 surfaces. A common mechanism of adsorption is identified for the adsorption of PMP1 which emphasizes the role of electrostatics to approach the peptide onto the surface followed by a full adhesion process where the entropic desolvation step plays a key role. Besides, according to the fact that mussel naturally controls the oxidation states of its proteins, further investigations were performed for two distinct redox states of PMP1, and we conclude that even if both states are able to allow interaction of PMP1 with the surfaces, the oxidation of PMP1 leads to a stronger interaction.
Collapse
Affiliation(s)
- J Touzeau
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - M Seydou
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - F Maurel
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - L Tallet
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - A Mutschler
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - P Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - F Barbault
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| |
Collapse
|
2
|
Han THL, Camadro JM, Barbault F, Santos R, El Hage Chahine JM, Ha-Duong NT. In Vitro interaction between yeast frataxin and superoxide dismutases: Influence of mitochondrial metals. Biochim Biophys Acta Gen Subj 2019; 1863:883-892. [PMID: 30797804 DOI: 10.1016/j.bbagen.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Friedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood. METHODS Therefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities. RESULTS Yfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal. CONCLUSIONS This work confirms the participation of Yfh1 in cellular defence against oxidative stress.
Collapse
Affiliation(s)
- Thi Hong Lien Han
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Jean-Michel Camadro
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Florent Barbault
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Renata Santos
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Nguyet-Thanh Ha-Duong
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France.
| |
Collapse
|
3
|
Ruan M, Seydou M, Noel V, Piro B, Maurel F, Barbault F. Molecular Dynamics Simulation of a RNA Aptasensor. J Phys Chem B 2017; 121:4071-4080. [PMID: 28363022 DOI: 10.1021/acs.jpcb.6b12544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.
Collapse
Affiliation(s)
- Min Ruan
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France.,School of Materials and Metallurgy, Hubei Polytechnic University , Huangshi, Hubei, China
| | - Mahamadou Seydou
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Vincent Noel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Benoit Piro
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - François Maurel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Florent Barbault
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| |
Collapse
|