1
|
Methods for Identification of Substrates/Inhibitors of FCP/SCP Type Protein Ser/Thr Phosphatases. Processes (Basel) 2020. [DOI: 10.3390/pr8121598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein phosphorylation is the most widespread type of post-translational modification and is properly controlled by protein kinases and phosphatases. Regarding the phosphorylation of serine (Ser) and threonine (Thr) residues, relatively few protein Ser/Thr phosphatases control the specific dephosphorylation of numerous substrates, in contrast with Ser/Thr kinases. Recently, protein Ser/Thr phosphatases were reported to have rigid substrate recognition and exert various biological functions. Therefore, identification of targeted proteins by individual protein Ser/Thr phosphatases is crucial to clarify their own biological functions. However, to date, information on the development of methods for identification of the substrates of protein Ser/Thr phosphatases remains scarce. In turn, substrate-trapping mutants are powerful tools to search the individual substrates of protein tyrosine (Tyr) phosphatases. This review focuses on the development of novel methods for the identification of Ser/Thr phosphatases, especially small C-terminal domain phosphatase 1 (Scp1), using peptide-displayed phage library with AlF4−/BeF3−, and discusses the identification of putative inhibitors.
Collapse
|
2
|
Rallabandi HR, Lee D, Sung J, Kim YJ. Peripheral Inhibition of Small C‐Terminal Domain Phosphatase 1 With Napthoquinone Analogs. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Dongsun Lee
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Jinmo Sung
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Biosciences and Nanotechnology Research CenterKonkuk University Chungju 27478 Republic of Korea
| |
Collapse
|
3
|
Rallabandi HR, Ganesan P, Kim YJ. Targeting the C-Terminal Domain Small Phosphatase 1. Life (Basel) 2020; 10:life10050057. [PMID: 32397221 PMCID: PMC7281111 DOI: 10.3390/life10050057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The human C-terminal domain small phosphatase 1 (CTDSP1/SCP1) is a protein phosphatase with a conserved catalytic site of DXDXT/V. CTDSP1’s major activity has been identified as dephosphorylation of the 5th Ser residue of the tandem heptad repeat of the RNA polymerase II C-terminal domain (RNAP II CTD). It is also implicated in various pivotal biological activities, such as acting as a driving factor in repressor element 1 (RE-1)-silencing transcription factor (REST) complex, which silences the neuronal genes in non-neuronal cells, G1/S phase transition, and osteoblast differentiation. Recent findings have denoted that negative regulation of CTDSP1 results in suppression of cancer invasion in neuroglioma cells. Several researchers have focused on the development of regulating materials of CTDSP1, due to the significant roles it has in various biological activities. In this review, we focused on this emerging target and explored the biological significance, challenges, and opportunities in targeting CTDSP1 from a drug designing perspective.
Collapse
|
4
|
Zhu Y, Gao Y, Sun X, Wang C, Rui X, Si D, Zhu J, Li W, Liu J. Discovery of novel serine/threonine protein phosphatase 1 inhibitors from traditional Chinese medicine through virtual screening and biological assays. J Biomol Struct Dyn 2019; 38:5464-5473. [PMID: 31820681 DOI: 10.1080/07391102.2019.1702588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) is a critical regulator of several processes, such as muscle contraction, neuronal signaling, glycogen synthesis, and cell proliferation. Dysregulation of PP1 has recently been found to be implicated in cardiac dysfunctions, which indicates that PP1 could be an attractive therapeutic target. However, discovery of PP1 inhibitors with satisfied safety and efficiency is still a challenge. Here, in order to discover potential PP1 inhibitors, compounds extracted from traditional Chinese medicine (TCM) were screened by a novel integrated virtual screening protocol including pharmacophore modeling and docking approaches. Combined with protein phosphatase inhibition assay, ZINC43060554 showed strongly inhibitory activity with IC50 values of 26.78 μM. Furthermore, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area binding free-energy analysis were performed to examine the stability of ligand binding modes. These novel scaffolds discovered in the present study can be used for rational design of PP1 inhibitors with high affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Research Institute, Nanjing Tongrentang Pharmaceutical Co. Ltd, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Identification of a Specific Inhibitor of Human Scp1 Phosphatase Using the Phosphorylation Mimic Phage Display Method. Catalysts 2019. [DOI: 10.3390/catal9100842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatases are divided into tyrosine (Tyr) phosphatases and serine/threonine (Ser/Thr) phosphatases. While substrate trapping mutants are frequently used to identify substrates of Tyr phosphatases, a rapid and simple method to identify Ser/Thr phosphatase substrates is yet to be developed. The TFIIF-associating component of RNA polymerase II C-terminal domain (CTD) phosphatase/small CTD phosphatase (FCP/SCP) phosphatase family is one of the three types of Ser/Thr protein phosphatases. Defects in these phosphatases are correlated with the occurrence of various diseases such as cancer and neuropathy. Recently, we developed phosphorylation mimic phage display (PMPD) method with AlF4−, a methodology to identify substrates for FCP/SCP type Ser/Thr phosphatase Scp1. Here, we report a PMPD method using BeF3− to identify novel substrate peptides bound to Scp1. After screening peptide phages, we identified peptides that bound to Scp1 in a BeF3−-dependent manner. Synthetic phosphopeptide BeM12-1, the sequence of which was isolated at the highest frequency, directly bound to Scp1. The binding was inhibited by adding BeF3−, indicating that the peptide binds to the active center of catalytic site in Scp1. The phosphorylated BeM12-1 worked as a competitive inhibitor of Scp1. Thus, PMPD method may be applicable for the identification of novel substrates and inhibitors of the FCP/SCP phosphatase family.
Collapse
|