1
|
Muna UM, Hafiz F, Biswas S, Azim R. GBDTSVM: Combined Support Vector Machine and Gradient Boosting Decision Tree Framework for efficient snoRNA-disease association prediction. Comput Biol Med 2025; 192:110219. [PMID: 40288295 DOI: 10.1016/j.compbiomed.2025.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Small nucleolar RNAs (snoRNAs) are increasingly recognized for their critical role in the pathogenesis and characterization of various human diseases. Consequently, the precise identification of snoRNA-disease associations (SDAs) is essential for the progression of diseases and the advancement of treatment strategies. However, conventional biological experimental approaches are costly, time-consuming, and resource-intensive; therefore, machine learning-based computational methods offer a promising solution to mitigate these limitations. This paper proposes a model called 'GBDTSVM', representing a novel and efficient machine learning approach for predicting snoRNA-disease associations by leveraging a Gradient Boosting Decision Tree (GBDT) and Support Vector Machine (SVM). 'GBDTSVM' effectively extracts integrated snoRNA-disease feature representations utilizing GBDT, and SVM is subsequently utilized to classify and identify potential associations. Furthermore, the method enhances the accuracy of these predictions by incorporating Gaussian integrated profile kernel similarity for both snoRNAs and diseases. Experimental evaluation of the GBDTSVM model demonstrates superior performance compared to state-of-the-art methods in the field, achieving an AUROC of 0.96 and an AUPRC of 0.95 on the 'MDRF' dataset. Moreover, our model shows superior performance on two more datasets named 'LSGT' and 'PsnoD'. Additionally, a case study conducted on the predicted snoRNA-disease associations verified the top-ranked snoRNAs across twelve prevalent diseases, further validating the efficacy of the GBDTSVM approach. These results underscore the model's potential as a robust tool for advancing snoRNA-related disease research. Source codes and datasets for our proposed framework can be obtained from: https://github.com/mariamuna04/gbdtsvm.
Collapse
Affiliation(s)
- Ummay Maria Muna
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh; BSRM School of Engineering, BRAC University, Dhaka 1212, Bangladesh.
| | - Fahim Hafiz
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| | - Shanta Biswas
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| | - Riasat Azim
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| |
Collapse
|
2
|
Chen L, Zhang S, Zhou B. Herb-disease association prediction model based on network consistency projection. Sci Rep 2025; 15:3328. [PMID: 39865145 PMCID: PMC11770172 DOI: 10.1038/s41598-025-87521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
A growing number of biological and clinical reports indicate the usefulness of herbs in the treatment of complex human diseases, giving an essential supplement for modern medicine. Similar to drugs, the use of experimental validation to identify related diseases of given herbs is both expensive and time-consuming. Such validation is even more difficult because each herb always contains several components. It is alternative to design computational models to predict herb-disease associations (HDAs). Nevertheless, only a few computational models have been developed for HDA prediction. In this study, we make full use of several properties of herbs and diseases, which are collected in a public database HERB, to design a model named HDAPM-NCP for predicting HDAs. Based on these properties, six herb kernels and five disease kernels are constructed, which are further fused into one unified herb kernel and one disease kernel. These kernels and herb-disease adjacency matrix are fed into network consistency projection to quantify the strength of herb-disease pairs. The cross-validation results show the high performance of HDAPM-NCP. Such performance is higher than that of two previous models. The ablation experiments prove the effects of modules in this model. Finally, we also analyze the weakness and strength of the model, uncovering which herb-disease pairs that HDAPM-NCP can yield reliable or unsatisfied predictions, and a case study is conducted to prove that HDAPM-NCP can discover latent HDAs.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Shiyi Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Bo Zhou
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
3
|
He S, Yun L, Yi H. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction. BMC Bioinformatics 2024; 25:79. [PMID: 38378479 PMCID: PMC10877759 DOI: 10.1186/s12859-024-05705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Identification of potential drug-disease associations is important for both the discovery of new indications for drugs and for the reduction of unknown adverse drug reactions. Exploring the potential links between drugs and diseases is crucial for advancing biomedical research and improving healthcare. While advanced computational techniques play a vital role in revealing the connections between drugs and diseases, current research still faces challenges in the process of mining potential relationships between drugs and diseases using heterogeneous network data. RESULTS In this study, we propose a learning framework for fusing Graph Transformer Networks and multi-aggregate graph convolutional network to learn efficient heterogenous information graph representations for drug-disease association prediction, termed WMAGT. This method extensively harnesses the capabilities of a robust graph transformer, effectively modeling the local and global interactions of nodes by integrating a graph convolutional network and a graph transformer with self-attention mechanisms in its encoder. We first integrate drug-drug, drug-disease, and disease-disease networks to construct heterogeneous information graph. Multi-aggregate graph convolutional network and graph transformer are then used in conjunction with neural collaborative filtering module to integrate information from different domains into highly effective feature representation. CONCLUSIONS Rigorous cross-validation, ablation studies examined the robustness and effectiveness of the proposed method. Experimental results demonstrate that WMAGT outperforms other state-of-the-art methods in accurate drug-disease association prediction, which is beneficial for drug repositioning and drug safety research.
Collapse
Affiliation(s)
- Shihui He
- School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China
- Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education, Kunming, 650500, China
| | - Lijun Yun
- School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education, Kunming, 650500, China.
| | - Haicheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
4
|
Peng W, He Z, Dai W, Lan W. MHCLMDA: multihypergraph contrastive learning for miRNA-disease association prediction. Brief Bioinform 2023; 25:bbad524. [PMID: 38243694 PMCID: PMC10796254 DOI: 10.1093/bib/bbad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The correct prediction of disease-associated miRNAs plays an essential role in disease prevention and treatment. Current computational methods to predict disease-associated miRNAs construct different miRNA views and disease views based on various miRNA properties and disease properties and then integrate the multiviews to predict the relationship between miRNAs and diseases. However, most existing methods ignore the information interaction among the views and the consistency of miRNA features (disease features) across multiple views. This study proposes a computational method based on multiple hypergraph contrastive learning (MHCLMDA) to predict miRNA-disease associations. MHCLMDA first constructs multiple miRNA hypergraphs and disease hypergraphs based on various miRNA similarities and disease similarities and performs hypergraph convolution on each hypergraph to capture higher order interactions between nodes, followed by hypergraph contrastive learning to learn the consistent miRNA feature representation and disease feature representation under different views. Then, a variational auto-encoder is employed to extract the miRNA and disease features in known miRNA-disease association relationships. Finally, MHCLMDA fuses the miRNA and disease features from different views to predict miRNA-disease associations. The parameters of the model are optimized in an end-to-end way. We applied MHCLMDA to the prediction of human miRNA-disease association. The experimental results show that our method performs better than several other state-of-the-art methods in terms of the area under the receiver operating characteristic curve and the area under the precision-recall curve.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China and Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China
| | - Zhichen He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China and Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China
| | - Wei Lan
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Chen L, Chen K, Zhou B. Inferring drug-disease associations by a deep analysis on drug and disease networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14136-14157. [PMID: 37679129 DOI: 10.3934/mbe.2023632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Drugs, which treat various diseases, are essential for human health. However, developing new drugs is quite laborious, time-consuming, and expensive. Although investments into drug development have greatly increased over the years, the number of drug approvals each year remain quite low. Drug repositioning is deemed an effective means to accelerate the procedures of drug development because it can discover novel effects of existing drugs. Numerous computational methods have been proposed in drug repositioning, some of which were designed as binary classifiers that can predict drug-disease associations (DDAs). The negative sample selection was a common defect of this method. In this study, a novel reliable negative sample selection scheme, named RNSS, is presented, which can screen out reliable pairs of drugs and diseases with low probabilities of being actual DDAs. This scheme considered information from k-neighbors of one drug in a drug network, including their associations to diseases and the drug. Then, a scoring system was set up to evaluate pairs of drugs and diseases. To test the utility of the RNSS, three classic classification algorithms (random forest, bayes network and nearest neighbor algorithm) were employed to build classifiers using negative samples selected by the RNSS. The cross-validation results suggested that such classifiers provided a nearly perfect performance and were significantly superior to those using some traditional and previous negative sample selection schemes.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Kaiyu Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bo Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| |
Collapse
|
6
|
Shokri Garjan H, Omidi Y, Poursheikhali Asghari M, Ferdousi R. In-silico computational approaches to study microbiota impacts on diseases and pharmacotherapy. Gut Pathog 2023; 15:10. [PMID: 36882861 PMCID: PMC9990230 DOI: 10.1186/s13099-023-00535-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology and microbiology. The growing recognition of human microbe-disease relationships provides crucial insights into the underlying disease process from the perspective of pathogens, which is extremely useful for pathogenesis research, early diagnosis, and precision medicine and therapy. Microbe-based analysis in terms of diseases and related drug discovery can predict new connections/mechanisms and provide new concepts. These phenomena have been studied via various in-silico computational approaches. This review aims to elaborate on the computational works conducted on the microbe-disease and microbe-drug topics, discuss the computational model approaches used for predicting associations and provide comprehensive information on the related databases. Finally, we discussed potential prospects and obstacles in this field of study, while also outlining some recommendations for further enhancing predictive capabilities.
Collapse
Affiliation(s)
- Hassan Shokri Garjan
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, Fort Lauderdale, FL, USA
| | | | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data 2023; 10:67. [PMID: 36732524 PMCID: PMC9893183 DOI: 10.1038/s41597-023-01960-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Developing personalized diagnostic strategies and targeted treatments requires a deep understanding of disease biology and the ability to dissect the relationship between molecular and genetic factors and their phenotypic consequences. However, such knowledge is fragmented across publications, non-standardized repositories, and evolving ontologies describing various scales of biological organization between genotypes and clinical phenotypes. Here, we present PrimeKG, a multimodal knowledge graph for precision medicine analyses. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, including disease-associated protein perturbations, biological processes and pathways, anatomical and phenotypic scales, and the entire range of approved drugs with their therapeutic action, considerably expanding previous efforts in disease-rooted knowledge graphs. PrimeKG contains an abundance of 'indications', 'contradictions', and 'off-label use' drug-disease edges that lack in other knowledge graphs and can support AI analyses of how drugs affect disease-associated networks. We supplement PrimeKG's graph structure with language descriptions of clinical guidelines to enable multimodal analyses and provide instructions for continual updates of PrimeKG as new data become available.
Collapse
Affiliation(s)
- Payal Chandak
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Kexin Huang
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard Data Science Initiative, Cambridge, MA, 02138, USA.
| |
Collapse
|
8
|
Drug-disease association prediction based on end-to-end multi-layer heterogeneous graph convolutional encoders. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
Shakyawar S, Southekal S, Guda C. mintRULS: Prediction of miRNA–mRNA Target Site Interactions Using Regularized Least Square Method. Genes (Basel) 2022; 13:genes13091528. [PMID: 36140696 PMCID: PMC9498445 DOI: 10.3390/genes13091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of miRNA–mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our method also demonstrated high accuracy when validated against experimentally derived data from condition- and cell-specific studies and expression studies of miRNAs and target genes, both in human and mouse.
Collapse
Affiliation(s)
- Sushil Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation (CBIRI), University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
10
|
Feng H, Xiang Y, Wang X, Xue W, Yue Z. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network. BMC Bioinformatics 2022; 23:271. [PMID: 35820798 PMCID: PMC9275082 DOI: 10.1186/s12859-022-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. Results In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. Discussion Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04819-3.
Collapse
Affiliation(s)
- Haisong Feng
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Xiang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaosong Wang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wei Xue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhenyu Yue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
11
|
Zhang Y, Lei X, Pan Y, Wu FX. Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks. Front Pharmacol 2022; 13:872785. [PMID: 35620297 PMCID: PMC9127467 DOI: 10.3389/fphar.2022.872785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The understanding of therapeutic properties is important in drug repositioning and drug discovery. However, chemical or clinical trials are expensive and inefficient to characterize the therapeutic properties of drugs. Recently, artificial intelligence (AI)-assisted algorithms have received extensive attention for discovering the potential therapeutic properties of drugs and speeding up drug development. In this study, we propose a new method based on GraphSAGE and clustering constraints (DRGCC) to investigate the potential therapeutic properties of drugs for drug repositioning. First, the drug structure features and disease symptom features are extracted. Second, the drug–drug interaction network and disease similarity network are constructed according to the drug–gene and disease–gene relationships. Matrix factorization is adopted to extract the clustering features of networks. Then, all the features are fed to the GraphSAGE to predict new associations between existing drugs and diseases. Benchmark comparisons on two different datasets show that our method has reliable predictive performance and outperforms other six competing. We have also conducted case studies on existing drugs and diseases and aimed to predict drugs that may be effective for the novel coronavirus disease 2019 (COVID-19). Among the predicted anti-COVID-19 drug candidates, some drugs are being clinically studied by pharmacologists, and their binding sites to COVID-19-related protein receptors have been found via the molecular docking technology.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
13
|
Lu L, Qin J, Chen J, Wu H, Zhao Q, Miyano S, Zhang Y, Yu H, Li C. DDIT: An Online Predictor for Multiple Clinical Phenotypic Drug-Disease Associations. Front Pharmacol 2022; 12:772026. [PMID: 35126114 PMCID: PMC8809407 DOI: 10.3389/fphar.2021.772026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Drug repurposing provides an effective method for high-speed, low-risk drug development. Clinical phenotype-based screening exceeded target-based approaches in discovering first-in-class small-molecule drugs. However, most of these approaches predict only binary phenotypic associations between drugs and diseases; the types of drug and diseases have not been well exploited. Principally, the clinical phenotypes of a known drug can be divided into indications (Is), side effects (SEs), and contraindications (CIs). Incorporating these different clinical phenotypes of drug–disease associations (DDAs) can improve the prediction accuracy of the DDAs. Methods: We develop Drug Disease Interaction Type (DDIT), a user-friendly online predictor that supports drug repositioning by submitting known Is, SEs, and CIs for a target drug of interest. The dataset for Is, SEs, and CIs was extracted from PREDICT, SIDER, and MED-RT, respectively. To unify the names of the drugs and diseases, we mapped their names to the Unified Medical Language System (UMLS) ontology using Rest API. We then integrated multiple clinical phenotypes into a conditional restricted Boltzmann machine (RBM) enabling the identification of different phenotypes of drug–disease associations, including the prediction of as yet unknown DDAs in the input. Results: By 10-fold cross-validation, we demonstrate that DDIT can effectively capture the latent features of the drug–disease association network and represents over 0.217 and over 0.072 improvement in AUC and AUPR, respectively, for predicting the clinical phenotypes of DDAs compared with the classic K-nearest neighbors method (KNN, including drug-based KNN and disease-based KNN), Random Forest, and XGBoost. By conducting leave-one-drug-class-out cross-validation, the AUC and AUPR of DDIT demonstrated an improvement of 0.135 in AUC and 0.075 in AUPR compared to any of the other four methods. Within the top 10 predicted indications, side effects, and contraindications, 7/10, 9/10, and 9/10 hit known drug–disease associations. Overall, DDIT is a useful tool for predicting multiple clinical phenotypic types of drug–disease associations.
Collapse
Affiliation(s)
- Lu Lu
- Department of Human Genetics, Department of Ultrasound and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Human Genetics, Department of Ultrasound and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, China
| | - Jiandong Chen
- School of Public Health, Undergraduate School of Zhejiang University, Hangzhou, China
| | - Hao Wu
- Department of Human Genetics, Department of Ultrasound and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zhao
- Department of Human Genetics, Department of Ultrasound and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yaozhong Zhang
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- *Correspondence: Yaozhong Zhang, ; Hua Yu, ; Chen Li,
| | - Hua Yu
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yaozhong Zhang, ; Hua Yu, ; Chen Li,
| | - Chen Li
- Department of Human Genetics, Department of Ultrasound and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, China
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yaozhong Zhang, ; Hua Yu, ; Chen Li,
| |
Collapse
|
14
|
Yang Y, Chen L. Identification of Drug-Disease Associations by Using Multiple Drug and
Disease Networks. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210825115406] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Drug repositioning is a new research area in drug development. It aims to discover
novel therapeutic uses of existing drugs. It could accelerate the process of designing novel drugs
for some diseases and considerably decrease the cost. The traditional method to determine novel therapeutic
uses of an existing drug is quite laborious. It is alternative to design computational methods to
overcome such defect.
Objective:
This study aims to propose a novel model for the identification of drug–disease associations.
Method:
Twelve drug networks and three disease networks were built, which were fed into a powerful
network-embedding algorithm called Mashup to produce informative drug and disease features. These
features were combined to represent each drug–disease association. Classic classification algorithm,
random forest, was used to build the model.
Results:
Tenfold cross-validation results indicated that the MCC, AUROC, and AUPR were 0.7156,
0.9280, and 0.9191, respectively.
Conclusion:
The proposed model showed good performance. Some tests indicated that a small dimension
of drug features and a large dimension of disease features were beneficial for constructing the
model. Moreover, the model was quite robust even if some drug or disease properties were not available.
Collapse
Affiliation(s)
- Ying Yang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
15
|
Hu P, Huang YA, Mei J, Leung H, Chen ZH, Kuang ZM, You ZH, Hu L. Learning from low-rank multimodal representations for predicting disease-drug associations. BMC Med Inform Decis Mak 2021; 21:308. [PMID: 34736437 PMCID: PMC8567544 DOI: 10.1186/s12911-021-01648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background Disease-drug associations provide essential information for drug discovery and disease treatment. Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-consuming and expensive. To better understand and explore these valuable associations, it would be useful to develop computational methods for predicting unobserved disease-drug associations. With the advent of various datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correlation between disease and drugs.
Results In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the association score of each pair of diseases and drugs in the database. This method achieves good performance on Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational models. Conclusions The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse multiple similar networks and combine matrix complement technology to predict potential association. We have demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for drug repositioning.
Collapse
Affiliation(s)
- Pengwei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Yu-An Huang
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Henry Leung
- Electrical and Computer Engineering, University of Calgary, Calgary, Canada
| | - Zhan-Heng Chen
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Ze-Min Kuang
- Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| |
Collapse
|
16
|
Jin S, Niu Z, Jiang C, Huang W, Xia F, Jin X, Liu X, Zeng X. HeTDR: Drug repositioning based on heterogeneous networks and text mining. PATTERNS (NEW YORK, N.Y.) 2021; 2:100307. [PMID: 34430926 PMCID: PMC8369234 DOI: 10.1016/j.patter.2021.100307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Using existing knowledge to carry out drug-disease associations prediction is a vital method for drug repositioning. However, effectively fusing the biomedical text and biological network information is one of the great challenges for most current drug repositioning methods. In this study, we propose a drug repositioning method based on heterogeneous networks and text mining (HeTDR). This model can combine drug features from multiple drug-related networks, disease features from biomedical corpora with the known drug-disease associations network to predict the correlation scores between drug and disease. Experiments demonstrate that HeTDR has excellent performance that is superior to that of state-of-the-art models. We present the top 10 novel HeTDR-predicted approved drugs for five diseases and prove our model is capable of discovering potential candidate drugs for disease indications.
Collapse
Affiliation(s)
- Shuting Jin
- Department of Computer Science, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | | | - Changzhi Jiang
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Feng Xia
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Xurui Jin
- MindRank AI Ltd., Hangzhou, Zhejiang 311113, China
| | - Xiangrong Liu
- Department of Computer Science, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
18
|
Sadeghi SS, Keyvanpour MR. Computational Drug Repurposing: Classification of the Research Opportunities and Challenges. Curr Comput Aided Drug Des 2021; 16:354-364. [PMID: 31198115 DOI: 10.2174/1573409915666190613113822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/13/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing has grown significantly in recent years. Research and innovation in drug repurposing are extremely popular due to its practical and explicit advantages. However, its adoption into practice is slow because researchers and industries have to face various challenges. OBJECTIVE As this field, there is a lack of a comprehensive platform for systematic identification for removing development limitations. This paper deals with a comprehensive classification of challenges in drug repurposing. METHODS Initially, a classification of various existing repurposing models is propounded. Next, the benefits of drug repurposing are summarized. Further, a categorization for computational drug repurposing shortcomings is presented. Finally, the methods are evaluated based on their strength to addressing the drawbacks. RESULTS This work can offer a desirable platform for comparing the computational repurposing methods by measuring the methods in light of these challenges. CONCLUSION A proper comparison could prepare guidance for a genuine understanding of methods. Accordingly, this comprehension of the methods will help researchers eliminate the barriers thereby developing and improving methods. Furthermore, in this study, we conclude why despite all the benefits of drug repurposing, it is not being done anymore.
Collapse
|
19
|
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet. NPJ Genom Med 2021; 6:50. [PMID: 34131148 PMCID: PMC8206141 DOI: 10.1038/s41525-021-00216-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Many of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, called KDDANet, for systematic and accurate uncovering the hidden genes mediating KDDA from the perspective of genome-wide functional gene interaction network. KDDANet demonstrated the competitive performances in both sensitivity and specificity of identifying genes in mediating KDDA in comparison to the existing state-of-the-art methods. Case studies on Alzheimer's disease (AD) and obesity uncovered the mechanistic relevance of KDDANet predictions. Furthermore, when applied with multiple types of cancer-omics datasets, KDDANet not only recapitulated known genes mediating KDDAs related to cancer, but also revealed novel candidates that offer new biological insights. Importantly, KDDANet can be used to discover the shared genes mediating multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code can be freely downloaded at https://github.com/huayu1111/KDDANet .
Collapse
|
20
|
Zheng Y, Wu Z. A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network. ACS OMEGA 2021; 6:3037-3045. [PMID: 33553921 PMCID: PMC7860102 DOI: 10.1021/acsomega.0c05377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Drug repositioning is the identification of interactions between drugs and target proteins in pharmaceutical sciences. Traditional large-scale validation through chemical experiments is time-consuming and expensive, while drug repositioning can drastically decrease the cost and duration taken by traditional drug development. With the rapid advancement of high-throughput technologies and the explosion of various biological and medical data, computational drug repositioning methods have been used to systematically identify potential drug-target interactions. Some of them are based on a particular class of machine learning algorithms called kernel methods. In this paper, we propose a new machine learning prediction method combining multiple kernels into a tripartite heterogeneous drug-target-disease interaction spaces in order to integrate multiple sources of biological information simultaneously. This novel network algorithm extends the traditional drug-target interaction bipartite graph to the third disease layer. Meanwhile, Gaussian kernel functions on heterogeneous networks and the regularized least square method of the Kronecker product are used to predict new drug-target interactions. The values of AUPR (area under the precision-recall curve) and AUC (the area under the receiver operating characteristic curve) of the proposed algorithm are significantly improved. Especially, the AUC values are improved to 0.99, 0.99, 0.97, and 0.96 on four benchmark data sets. These experimental results substantiate that the network topology can be used for predicting drug-target interactions.
Collapse
Affiliation(s)
- Ying Zheng
- School of Computer & Communication
Engineering, Changsha University of Science
& Technology, Changsha 410000, China
| | - Zheng Wu
- School of Computer & Communication
Engineering, Changsha University of Science
& Technology, Changsha 410000, China
| |
Collapse
|
21
|
Huang L, Luo H, Li S, Wu FX, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2020; 22:5956929. [PMID: 33152756 DOI: 10.1093/bib/bbaa265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Drug similarities play an important role in modern biology and medicine, as they help scientists gain deep insights into drugs' therapeutic mechanisms and conduct wet labs that may significantly improve the efficiency of drug research and development. Nowadays, a number of drug-related databases have been constructed, with which many methods have been developed for computing similarities between drugs for studying associations between drugs, human diseases, proteins (drug targets) and more. In this review, firstly, we briefly introduce the publicly available drug-related databases. Secondly, based on different drug features, interaction relationships and multimodal data, we summarize similarity calculation methods in details. Then, we discuss the applications of drug similarities in various biological and medical areas. Finally, we evaluate drug similarity calculation methods with common evaluation metrics to illustrate the important roles of drug similarity measures on different applications.
Collapse
Affiliation(s)
- Lan Huang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| | - Huimin Luo
- School of Computer and Information Engineering at Henan University, Kaifeng, China
| | - Suning Li
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Fang-Xiang Wu
- College of Engineering and Department of Computer Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| |
Collapse
|
22
|
Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug-disease associations through layer attention graph convolutional network. Brief Bioinform 2020; 22:5918381. [PMID: 33078832 DOI: 10.1093/bib/bbaa243] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance. RESULTS In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. CONCLUSION LAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
Collapse
Affiliation(s)
- Zhouxin Yu
- College of Informatics, Huazhong Agricultural University
| | - Feng Huang
- College of Informatics, Huazhong Agricultural University
| | - Xiaohan Zhao
- College of Informatics, Huazhong Agricultural University
| | | | - Wen Zhang
- College of Informatics, Huazhong Agricultural University
| |
Collapse
|
23
|
Jiang HJ, Huang YA, You ZH. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Sci Rep 2020; 10:4972. [PMID: 32188871 PMCID: PMC7080766 DOI: 10.1038/s41598-020-61616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Drug-disease association is an important piece of information which participates in all stages of drug repositioning. Although the number of drug-disease associations identified by high-throughput technologies is increasing, the experimental methods are time consuming and expensive. As supplement to them, many computational methods have been developed for an accurate in silico prediction for new drug-disease associations. In this work, we present a novel computational model combining sparse auto-encoder and rotation forest (SAEROF) to predict drug-disease association. Gaussian interaction profile kernel similarity, drug structure similarity and disease semantic similarity were extracted for exploring the association among drugs and diseases. On this basis, a rotation forest classifier based on sparse auto-encoder is proposed to predict the association between drugs and diseases. In order to evaluate the performance of the proposed model, we used it to implement 10-fold cross validation on two golden standard datasets, Fdataset and Cdataset. As a result, the proposed model achieved AUCs (Area Under the ROC Curve) of Fdataset and Cdataset are 0.9092 and 0.9323, respectively. For performance evaluation, we compared SAEROF with the state-of-the-art support vector machine (SVM) classifier and some existing computational models. Three human diseases (Obesity, Stomach Neoplasms and Lung Neoplasms) were explored in case studies. As a result, more than half of the top 20 drugs predicted were successfully confirmed by the Comparative Toxicogenomics Database(CTD database). This model is a feasible and effective method to predict drug-disease correlation, and its performance is significantly improved compared with existing methods.
Collapse
Affiliation(s)
- Han-Jing Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Yu-An Huang
- Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China.
| |
Collapse
|
24
|
Mayers M, Li TS, Queralt-Rosinach N, Su AI. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network. BMC Bioinformatics 2019; 20:653. [PMID: 31829175 PMCID: PMC6907279 DOI: 10.1186/s12859-019-3297-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repositioned via computational screening remains low. New strategies for algorithm evaluation that more accurately reflect the repositioning potential of a compound could provide a better target for future optimizations. RESULTS Using a text-mined database, we applied a previously described network-based computational repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set indications. However, to better approximate a real-world scenario, we built a time-resolved evaluation framework. At various time points, we built networks corresponding to prior knowledge for use as a training set, and then predicted on a test set comprised of indications that were subsequently described. This framework showed a marked reduction in performance, peaking in performance metrics with the 1985 network at an AUROC of .797. Examining performance reductions due to removal of specific types of relationships highlighted the importance of drug-drug and disease-disease similarity metrics. Using data from future timepoints, we demonstrate that further acquisition of these kinds of data may help improve computational results. CONCLUSIONS Evaluating a repositioning algorithm using indications unknown to input network better tunes its ability to find emerging drug indications, rather than finding those which have been randomly withheld. Focusing efforts on improving algorithmic performance in a time-resolved paradigm may further improve computational repositioning predictions.
Collapse
Affiliation(s)
- Michael Mayers
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Tong Shu Li
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | | | - Andrew I. Su
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| |
Collapse
|
25
|
Predicting Drug-Disease Associations via Using Gaussian Interaction Profile and Kernel-Based Autoencoder. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2426958. [PMID: 31534955 PMCID: PMC6732622 DOI: 10.1155/2019/2426958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023]
Abstract
Computational drug repositioning, designed to identify new indications for existing drugs, significantly reduced the cost and time involved in drug development. Prediction of drug-disease associations is promising for drug repositioning. Recent years have witnessed an increasing number of machine learning-based methods for calculating drug repositioning. In this paper, a novel feature learning method based on Gaussian interaction profile kernel and autoencoder (GIPAE) is proposed for drug-disease association. In order to further reduce the computation cost, both batch normalization layer and the full-connected layer are introduced to reduce training complexity. The experimental results of 10-fold cross validation indicate that the proposed method achieves superior performance on Fdataset and Cdataset with the AUCs of 93.30% and 96.03%, respectively, which were higher than many previous computational models. To further assess the accuracy of GIPAE, we conducted case studies on two complex human diseases. The top 20 drugs predicted, 14 obesity-related drugs, and 11 drugs related to Alzheimer's disease were validated in the CTD database. The results of cross validation and case studies indicated that GIPAE is a reliable model for predicting drug-disease associations.
Collapse
|
26
|
Abstract
We present a bipartite graph-based approach to calculate drug pairwise similarity for identifying potential new indications of approved drugs. Both chemical and molecular features were used in drug similarity calculation. In this paper, we first extracted drug chemical structures and drug-target interactions. Second, we computed chemical structure similarity and drug- target profile similarity. Further, we constructed a bipartite graph model with known relationships between drugs and their target proteins. Finally, we weighted summing drug structure similarity with target profile similarity to derive drug pairwise similarity, so that we can predict potential indication of a drug from its similar drugs. In addition, we summarized some alternative strategies and variations follow-up to each section in the overall analysis.
Collapse
|
27
|
Wang C, Kurgan L. Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome. Brief Bioinform 2018; 20:2066-2087. [DOI: 10.1093/bib/bby069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
AbstractDrug–protein interactions (DPIs) underlie the desired therapeutic actions and the adverse side effects of a significant majority of drugs. Computational prediction of DPIs facilitates research in drug discovery, characterization and repurposing. Similarity-based methods that do not require knowledge of protein structures are particularly suitable for druggable genome-wide predictions of DPIs. We review 35 high-impact similarity-based predictors that were published in the past decade. We group them based on three types of similarities and their combinations that they use. We discuss and compare key aspects of these methods including source databases, internal databases and their predictive models. Using our novel benchmark database, we perform comparative empirical analysis of predictive performance of seven types of representative predictors that utilize each type of similarity individually and all possible combinations of similarities. We assess predictive quality at the database-wide DPI level and we are the first to also include evaluation over individual drugs. Our comprehensive analysis shows that predictors that use more similarity types outperform methods that employ fewer similarities, and that the model combining all three types of similarities secures area under the receiver operating characteristic curve of 0.93. We offer a comprehensive analysis of sensitivity of predictive performance to intrinsic and extrinsic characteristics of the considered predictors. We find that predictive performance is sensitive to low levels of similarities between sequences of the drug targets and several extrinsic properties of the input drug structures, drug profiles and drug targets. The benchmark database and a webserver for the seven predictors are freely available at http://biomine.cs.vcu.edu/servers/CONNECTOR/.
Collapse
Affiliation(s)
- Chen Wang
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|