1
|
Yang X, Liu Y, Gan J, Xiao ZX, Cao Y. FitDock: protein-ligand docking by template fitting. Brief Bioinform 2022; 23:6548375. [PMID: 35289358 DOI: 10.1093/bib/bbac087] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-ligand docking is an essential method in computer-aided drug design and structural bioinformatics. It can be used to identify active compounds and reveal molecular mechanisms of biological processes. A successful docking usually requires thorough conformation sampling and scoring, which are computationally expensive and difficult. Recent studies demonstrated that it can be beneficial to docking with the guidance of existing similar co-crystal structures. In this work, we developed a protein-ligand docking method, named FitDock, which fits initial conformation to the given template using a hierarchical multi-feature alignment approach, subsequently explores the possible conformations and finally outputs refined docking poses. In our comprehensive benchmark tests, FitDock showed 40%-60% improvement in terms of docking success rate and an order of magnitude faster over popular docking methods, if template structures exist (> 0.5 ligand similarity). FitDock has been implemented in a user-friendly program, which could serve as a convenient tool for drug design and molecular mechanism exploration. It is now freely available for academic users at http://cao.labshare.cn/fitdock/.
Collapse
Affiliation(s)
- Xiaocong Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianhong Gan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Vázquez J, López M, Gibert E, Herrero E, Luque FJ. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020; 25:E4723. [PMID: 33076254 PMCID: PMC7587536 DOI: 10.3390/molecules25204723] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline. A variety of computational approaches, which are generally classified as ligand-based (LB) and structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands and targets to enable the screening of virtual libraries in the search of active compounds. Though LB and SB methods have found widespread application in the discovery of novel drug-like candidates, their complementary natures have stimulated continued efforts toward the development of hybrid strategies that combine LB and SB techniques, integrating them in a holistic computational framework that exploits the available information of both ligand and target to enhance the success of drug discovery projects. In this review, we analyze the main strategies and concepts that have emerged in the last years for defining hybrid LB + SB computational schemes in VS studies. Particularly, attention is focused on the combination of molecular similarity and docking, illustrating them with selected applications taken from the literature.
Collapse
Affiliation(s)
- Javier Vázquez
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| | - Manel López
- AB Science, Parc Scientifique de Luminy, Zone Luminy Enterprise, Case 922, 163 Av. de Luminy, 13288 Marseille, France;
| | - Enric Gibert
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - Enric Herrero
- Pharmacelera, Plaça Pau Vila, 1, Sector C 2a, Edificio Palau de Mar, 08039 Barcelona, Spain;
| | - F. Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTC-UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
3
|
Sasmal S, El Khoury L, Mobley DL. D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors. J Comput Aided Mol Des 2020; 34:163-177. [PMID: 31781990 PMCID: PMC8208075 DOI: 10.1007/s10822-019-00249-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023]
Abstract
The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4 (GC4), which focused on predicting the binding poses and affinity ranking for compounds targeting the [Formula: see text]-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 Å RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and DOCK 6 and found that using a reference ligand to guide the docking process is a better strategy for pose prediction and helped HYBRID to perform better here. We also conducted end-point free energy estimates on molecules dynamics based ensembles of protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R GC4 are: (i) the generation of the macrocyclic conformers is a key step for successful pose prediction, (ii) the protonation states of the BACE-1 binding site should be treated carefully, (iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and (iv) the MM-GBSA method does not perform well at predicting protein-ligand binding affinities here.
Collapse
Affiliation(s)
- Sukanya Sasmal
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Parks CD, Gaieb Z, Chiu M, Yang H, Shao C, Walters WP, Jansen JM, McGaughey G, Lewis RA, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK. D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 2020; 34:99-119. [PMID: 31974851 PMCID: PMC7261493 DOI: 10.1007/s10822-020-00289-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.
Collapse
Affiliation(s)
- Conor D Parks
- Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zied Gaieb
- Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Chiu
- Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Huanwang Yang
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Johanna M Jansen
- Novartis Institutes for BioMedical Research, Emeryville, CA, 94608, USA
| | | | - Richard A Lewis
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002, Basel, Switzerland
| | | | | | | | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rommie E Amaro
- Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093-0340, USA.
| | - Michael K Gilson
- Drug Design Data Resource, University of California, San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive, MC0751, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Kadukova M, Chupin V, Grudinin S. Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4. J Comput Aided Mol Des 2019; 34:191-200. [PMID: 31784861 DOI: 10.1007/s10822-019-00263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
The D3R Grand Challenge 4 provided a brilliant opportunity to test macrocyclic docking protocols on a diverse high-quality experimental data. We participated in both pose and affinity prediction exercises. Overall, we aimed to use an automated structure-based docking pipeline built around a set of tools developed in our team. This exercise again demonstrated a crucial importance of the correct local ligand geometry for the overall success of docking. Starting from the second part of the pose prediction stage, we developed a stable pipeline for sampling macrocycle conformers. This resulted in the subangstrom average precision of our pose predictions. In the affinity prediction exercise we obtained average results. However, we could improve these when using docking poses submitted by the best predictors. Our docking tools including the Convex-PL scoring function are available at https://team.inria.fr/nano-d/software/.
Collapse
Affiliation(s)
- Maria Kadukova
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700
| | - Vladimir Chupin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000, Grenoble, France.
| |
Collapse
|
6
|
Exploring fragment-based target-specific ranking protocol with machine learning on cathepsin S. J Comput Aided Mol Des 2019; 33:1095-1105. [PMID: 31729618 DOI: 10.1007/s10822-019-00247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
Abstract
Cathepsin S (CatS), a member of cysteine cathepsin proteases, has been well studied due to its significant role in many pathological processes, including arthritis, cancer and cardiovascular diseases. CatS inhibitors have been included in D3R-GC3 for both docking pose prediction and affinity ranking, and in D3R-GC4 for binding affinity ranking. The difficulties posed by CatS inhibitors in D3R mainly come from three aspects: large size, high flexibility and similar chemical structures. We have participated in GC4; our best submitted model, which employs a similarity-based alignment docking and Vina scoring protocol, yielded Kendall's τ of 0.23 for 459 binders in GC4. In our further explorations with machine learning, by curating a CatS specific training set, adopting a similarity-based constrained docking method as well as an arm-based fragmentation strategy which can describe large inhibitors in a locality-sensitive fashion, our best structure-based ranking protocol can achieve Kendall's τ of 0.52 for all binders in GC4. In this exploration process, we have demonstrated the importance of training data, docking approaches and fragmentation strategies in inhibitor-ranking protocol development with machine learning.
Collapse
|
7
|
Kumar A, Zhang KYJ. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model. J Comput Aided Mol Des 2019; 33:1045-1055. [PMID: 31463704 DOI: 10.1007/s10822-019-00220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
In order to improve the pose prediction performance of docking methods, we have previously developed the pose prediction using shape similarity (PoPSS) method. It identifies a ligand conformation of the highest shape similarity with target protein crystal ligands. The identified ligand conformation is then placed into the target protein binding pocket and refined using side-chain repacking and Monte Carlo energy minimization. Subsequently, we have reported a modification to PoPSS, named as PoPSS-Lite, using a simple grid-based energy minimization for side-chain repacking and Tversky correlation coefficient as the similarity metric. This modification has improved the pose prediction performance and PoPSS-Lite was one of the top performers in D3R GC3. Here we report a further modification to PoPSS that utilizes a continuum solvent model to account for water mediated protein ligand interactions. In this approach, named as PoPSS-PB, the ligand conformation of the highest shape similarity with crystal ligands is refined along with the target protein binding site by incorporating the Poisson-Boltzmann electrostatics. The performance of PoPSS-PB along with PoPSS and PoPSS-Lite was prospectively evaluated in D3R GC4. PoPSS-PB not only demonstrated excellent performance with mean and median RMSDs of 1.20 and 1.13 Å but also achieved improved performance over PoPSS and PoPSS-Lite. Furthermore, the comparison with other D3R GC4 pose prediction submissions revealed admirable performance. Our results showed that the binding poses of ligands with unknown binding modes can be successfully predicted by utilizing ligand 3D shape similarity with known crystallographic ligands and that taking the solvation into consideration improves pose prediction.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|