1
|
Azimi S, Gallicchio E. Potential distribution theory of alchemical transfer. J Chem Phys 2025; 162:054106. [PMID: 39902686 PMCID: PMC11803756 DOI: 10.1063/5.0244918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
We present an analytical description of the Alchemical Transfer Method (ATM) for molecular binding using the Potential Distribution Theory (PDT) formalism. ATM models the binding free energy by mapping the bound and unbound states of the complex by translating the ligand coordinates. PDT relates the free energy and the probability densities of the perturbation energy along the alchemical path to the probability density at the initial state, which is the unbound state of the complex in the case of a binding process. Hence, the ATM probability density of the transfer energy at the unbound state is first related by a convolution operation of the probability densities for coupling the ligand to the solvent and coupling it to the solvated receptor-for which analytical descriptions are available-with parameters obtained from maximum likelihood analysis of data from double-decoupling alchemical calculations. PDT is then used to extend this analytical description along the alchemical transfer pathway. We tested the theory on the alchemical binding of five guests to the tetramethyl octa-acid host from the SAMPL8 benchmark set. In each case, the probability densities of the perturbation energy for transfer along the alchemical transfer pathway obtained from numerical calculations match those predicted from the theory and double-decoupling simulations. The work provides a solid theoretical foundation for alchemical transfer, offers physical insights on the form of the probability densities observed in alchemical transfer calculations, and confirms the conceptual and numerical equivalence between the alchemical transfer and double-decoupling processes.
Collapse
Affiliation(s)
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, USA
| |
Collapse
|
2
|
Azimi S, Gallicchio E. Binding Selectivity Analysis from Alchemical Receptor Hopping and Swapping Free Energy Calculations. J Phys Chem B 2024; 128:10841-10852. [PMID: 39468848 PMCID: PMC11551962 DOI: 10.1021/acs.jpcb.4c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
We present receptor hopping and receptor swapping free energy estimation protocols based on the Alchemical Transfer Method (ATM) to model the binding selectivity of a set of ligands to two arbitrary receptors. The receptor hopping protocol, where a ligand is alchemically transferred from one receptor to another in one simulation, directly yields the ligand's binding selectivity free energy (BSFE) for the two receptors, which is the difference between the two individual binding free energies. In the receptor swapping protocol, the first ligand of a pair is transferred from one receptor to another while the second ligand is simultaneously transferred in the opposite direction. The receptor swapping free energy yields the differences in binding selectivity free energies of a set of ligands, which, when combined using a generalized DiffNet algorithm, yield the binding selectivity free energies of the ligands. We test these algorithms on host-guest systems and show that they yield results that agree with experimental data and are consistent with differences in absolute and relative binding free energies obtained by conventional methods. Preliminary applications to the selectivity analysis of molecular fragments binding to the trypsin and thrombin serine protease confirm the potential of the receptor swapping technology in structure-based drug discovery. The novel methodologies presented in this work are a first step toward streamlined and computationally efficient protocols for ligand selectivity optimization between mutants and homologous proteins.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Emilio Gallicchio
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Zhang S, Giese TJ, Lee TS, York DM. Alchemical Enhanced Sampling with Optimized Phase Space Overlap. J Chem Theory Comput 2024; 20:3935-3953. [PMID: 38666430 PMCID: PMC11157682 DOI: 10.1021/acs.jctc.4c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
An alchemical enhanced sampling (ACES) method has recently been introduced to facilitate importance sampling in free energy simulations. The method achieves enhanced sampling from Hamiltonian replica exchange within a dual topology framework while utilizing new smoothstep softcore potentials. A common sampling problem encountered in lead optimization is the functionalization of aromatic rings that exhibit distinct conformational preferences when interacting with the protein. It is difficult to converge the distribution of ring conformations due to the long time scale of ring flipping events; however, the ACES method addresses this issue by modeling the syn and anti ring conformations within a dual topology. ACES thereby samples the conformer distributions by alchemically tunneling between states, as opposed to traversing a physical pathway with a high rotational barrier. We demonstrate the use of ACES to overcome conformational sampling issues involving ring flipping in ML300-derived noncovalent inhibitors of SARS-CoV-2 Main Protease (Mpro). The demonstrations explore how the use of replica exchange and the choice of softcore selection affects the convergence of the ring conformation distributions. Furthermore, we examine how the accuracy of the calculated free energies is affected by the degree of phase space overlap (PSO) between adjacent states (i.e., between neighboring λ-windows) and the Hamiltonian replica exchange acceptance ratios. Both of these factors are sensitive to the spacing between the intermediate states. We introduce a new method for choosing a schedule of λ values. The method analyzes short "burn-in" simulations to construct a 2D map of the nonlocal PSO. The schedule is obtained by optimizing an alchemical pathway on the 2D map that equalizes the PSO between the λ intervals. The optimized phase space overlap λ-spacing method (Opt-PSO) leads to more numerous end-to-end single passes and round trips due to the correlation between PSO and Hamiltonian replica exchange acceptance ratios. The improved exchange statistics enhance the efficiency of ACES method. The method has been implemented into the FE-ToolKit software package, which is freely available.
Collapse
Affiliation(s)
- Shi Zhang
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Tai-Sung Lee
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Amezcua M, Setiadi J, Mobley DL. The SAMPL9 host-guest blind challenge: an overview of binding free energy predictive accuracy. Phys Chem Chem Phys 2024; 26:9207-9225. [PMID: 38444308 PMCID: PMC10954238 DOI: 10.1039/d3cp05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
We report the results of the SAMPL9 host-guest blind challenge for predicting binding free energies. The challenge focused on macrocycles from pillar[n]-arene and cyclodextrin host families, including WP6, and bCD and HbCD. A variety of methods were used by participants to submit binding free energy predictions. A machine learning approach based on molecular descriptors achieved the highest accuracy (RMSE of 2.04 kcal mol-1) among the ranked methods in the WP6 dataset. Interestingly, predictions for WP6 obtained via docking tended to outperform all methods (RMSE of 1.70 kcal mol-1), most of which are MD based and computationally more expensive. In general, methods applying force fields achieved better correlation with experiments for WP6 opposed to the machine learning and docking models. In the cyclodextrin-phenothiazine challenge, the ATM approach emerged as the top performing method with RMSE less than 1.86 kcal mol-1. Correlation metrics of ranked methods in this dataset were relatively poor compared to WP6. We also highlight several lessons learned to guide future work and help improve studies on the systems discussed. For example, WP6 may be present in other microstates other than its -12 state in the presence of certain guests. Machine learning approaches can be used to fine tune or help train force fields for certain chemistry (i.e. WP6-G4). Certain phenothiazines occupy distinct primary and secondary orientations, some of which were considered individually for accurate binding free energies. The accuracy of predictions from certain methods while starting from a single binding pose/orientation demonstrates the sensitivity of calculated binding free energies to the orientation, and in some cases the likely dominant orientation for the system. Computational and experimental results suggest that guest phenothiazine core traverses both the secondary and primary faces of the cyclodextrin hosts, a bulky cationic side chain will primarily occupy the primary face, and the phenothiazine core substituent resides at the larger secondary face.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
5
|
Chen L, Wu Y, Wu C, Silveira A, Sherman W, Xu H, Gallicchio E. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. J Chem Inf Model 2024; 64:250-264. [PMID: 38147877 DOI: 10.1021/acs.jcim.3c01705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The Alchemical Transfer Method (ATM) is herein validated against the relative binding-free energies (RBFEs) of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and AToM-OpenMM software to compute the RBFEs of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical RBFE methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and postcorrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 RBFE calculations for eight protein targets and found that ATM achieves accuracy comparable to that of existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into the specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM can be applied as a production tool for RBFE predictions across a wide range of perturbation types within a unified, open-source framework.
Collapse
Affiliation(s)
- Lieyang Chen
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Yujie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Chuanjie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Ana Silveira
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Huafeng Xu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
6
|
Hurley MFD, Raddi RM, Pattis JG, Voelz VA. Expanded ensemble predictions of absolute binding free energies in the SAMPL9 host-guest challenge. Phys Chem Chem Phys 2023; 25:32393-32406. [PMID: 38009066 PMCID: PMC10760931 DOI: 10.1039/d3cp02197a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
As part of the SAMPL9 community-wide blind host-guest challenge, we implemented an expanded ensemble workflow to predict absolute binding free energies for 13 small molecules against pillar[6]arene. Notable features of our protocol include consideration of a variety of protonation and enantiomeric states for both host and guests, optimization of alchemical intermediates, and analysis of free energy estimates and their uncertainty using large numbers of simulation replicates performed using distributed computing. Our predictions of absolute binding free energies resulted in a mean absolute error of 2.29 kcal mol-1 and an R2 of 0.54. Overall, results show that expanded ensemble calculations using all-atom molecular dynamics simulations are a valuable and efficient computational tool in predicting absolute binding free energies.
Collapse
Affiliation(s)
| | - Robert M Raddi
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| | - Jason G Pattis
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
York DM. Modern Alchemical Free Energy Methods for Drug Discovery Explained. ACS PHYSICAL CHEMISTRY AU 2023; 3:478-491. [PMID: 38034038 PMCID: PMC10683484 DOI: 10.1021/acsphyschemau.3c00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/02/2023]
Abstract
This Perspective provides a contextual explanation of the current state-of-the-art alchemical free energy methods and their role in drug discovery as well as highlights select emerging technologies. The narrative attempts to answer basic questions about what goes on "under the hood" in free energy simulations and provide general guidelines for how to run simulations and analyze the results. It is the hope that this work will provide a valuable introduction to students and scientists in the field.
Collapse
Affiliation(s)
- Darrin M. York
- Laboratory for Biomolecular
Simulation Research, Institute for Quantitative Biomedicine, and Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Khuttan S, Azimi S, Wu JZ, Dick S, Wu C, Xu H, Gallicchio E. Taming multiple binding poses in alchemical binding free energy prediction: the β-cyclodextrin host-guest SAMPL9 blinded challenge. Phys Chem Chem Phys 2023; 25:24364-24376. [PMID: 37676233 DOI: 10.1039/d3cp02125d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the β-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in in silico drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| | | | | | | | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| |
Collapse
|
9
|
Wickstrom L, Gallicchio E, Chen L, Kurtzman T, Deng N. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Phys Chem Chem Phys 2022; 24:6037-6052. [PMID: 35212338 PMCID: PMC9044818 DOI: 10.1039/d1cp05075c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Borough of Manhattan Community College, The City University of New York, Department of Science, New York, New York, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.,PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA
| | - Lieyang Chen
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Tom Kurtzman
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, USA.
| |
Collapse
|
10
|
Azimi S, Khuttan S, Wu JZ, Pal RK, Gallicchio E. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J Chem Inf Model 2022; 62:309-323. [PMID: 34990555 DOI: 10.1021/acs.jcim.1c01129] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rajat K Pal
- Roivant Sciences, Inc., Boston, Massachusetts 02210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|