1
|
Liesen M, Vilseck JZ. Superimposing Ligands with a Ligand Overlay as an Alternate Topology Model for λ-Dynamics-Based Calculations. J Phys Chem B 2024; 128:11359-11368. [PMID: 39515788 PMCID: PMC11587946 DOI: 10.1021/acs.jpcb.4c04805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Alchemical free energy (AFE) calculations can predict binding affinity changes as a function of structural modifications and have become powerful tools for lead optimization and drug discovery. Central to the setup and performance of AFE calculations is the manner of mapping alchemical transformations, known as the topology model. Single, dual, and hybrid topology models have been used with various AFE methods in the field. In recent works, λ-dynamics (λD) free energy calculations, specifically, have preferred the use of a hybrid multiple topology (HMT) for sampling multiple ligand perturbations. In this work, we evaluate a new topology method called ligand overlay (LO) for use with λD-based calculations, including the recently introduced λ-dynamics with a bias-updated Gibbs sampling (LaDyBUGS) approach. LO is a full multiple topology model that allows entire ligands to be sampled and restrained within a λ-dynamics framework. Relative binding free energies were computed with HMT or LO topology models with LaDyBUGS for 45 ligands across five protein benchmark systems. An overall Pearson R correlation of 0.98 and mean unsigned error of 0.32 kcal/mol were observed, suggesting that LO is a viable alternative topology model for λD-based calculations. We discuss the merits of using an HMT or LO model for future ligand studies with λD or LaDyBUGS calculations.
Collapse
Affiliation(s)
- Michael
P. Liesen
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jonah Z. Vilseck
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
Ries B, Alibay I, Swenson DWH, Baumann HM, Henry MM, Eastwood JRB, Gowers RJ. Kartograf: A Geometrically Accurate Atom Mapper for Hybrid-Topology Relative Free Energy Calculations. J Chem Theory Comput 2024; 20:1862-1877. [PMID: 38330251 PMCID: PMC10941767 DOI: 10.1021/acs.jctc.3c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Relative binding free energy (RBFE) calculations have emerged as a powerful tool that supports ligand optimization in drug discovery. Despite many successes, the use of RBFEs can often be limited by automation problems, in particular, the setup of such calculations. Atom mapping algorithms are an essential component in setting up automatic large-scale hybrid-topology RBFE calculation campaigns. Traditional algorithms typically employ a 2D subgraph isomorphism solver (SIS) in order to estimate the maximum common substructure. SIS-based approaches can be limited by time-intensive operations and issues with capturing geometry-linked chemical properties, potentially leading to suboptimal solutions. To overcome these limitations, we have developed Kartograf, a geometric-graph-based algorithm that uses primarily the 3D coordinates of atoms to find a mapping between two ligands. In free energy approaches, the ligand conformations are usually derived from docking or other previous modeling approaches, giving the coordinates a certain importance. By considering the spatial relationships between atoms related to the molecule coordinates, our algorithm bypasses the computationally complex subgraph matching of SIS-based approaches and reduces the problem to a much simpler bipartite graph matching problem. Moreover, Kartograf effectively circumvents typical mapping issues induced by molecule symmetry and stereoisomerism, making it a more robust approach for atom mapping from a geometric perspective. To validate our method, we calculated mappings with our novel approach using a diverse set of small molecules and used the mappings in relative hydration and binding free energy calculations. The comparison with two SIS-based algorithms showed that Kartograf offers a fast alternative approach. The code for Kartograf is freely available on GitHub (https://github.com/OpenFreeEnergy/kartograf). While developed for the OpenFE ecosystem, Kartograf can also be utilized as a standalone Python package.
Collapse
Affiliation(s)
- Benjamin Ries
- Medicinal
Chemistry, Boehringer Ingelheim Pharma GmbH
& Co KG, Birkendorfer Str 65, 88397 Biberach an der Riss, Germany
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Irfan Alibay
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - David W. H. Swenson
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Hannah M. Baumann
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Michael M. Henry
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
- Computational
and Systems Biology Program, Sloan Kettering
Institute, Memorial Sloan Kettering Cancer Center, New York, 1275 New York, United States
| | - James R. B. Eastwood
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| | - Richard J. Gowers
- Open
Free Energy, Open Molecular Software Foundation, Davis, 95616 California, United States
| |
Collapse
|
3
|
Champion C, Gall R, Ries B, Rieder SR, Barros EP, Riniker S. Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases. J Chem Inf Model 2023; 63:7133-7147. [PMID: 37948537 PMCID: PMC10685456 DOI: 10.1021/acs.jcim.3c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Alchemical free-energy methods based on molecular dynamics (MD) simulations have become important tools to identify modifications of small organic molecules that improve their protein binding affinity during lead optimization. The routine application of pairwise free-energy methods to rank potential binders from best to worst is impacted by the combinatorial increase in calculations to perform when the number of molecules to assess grows. To address this fundamental limitation, our group has developed replica-exchange enveloping distribution sampling (RE-EDS), a pathway-independent multistate method, enabling the calculation of alchemical free-energy differences between multiple ligands (N > 2) from a single MD simulation. In this work, we apply the method to a set of four kinases with diverse binding pockets and their corresponding inhibitors (42 in total), chosen to showcase the general applicability of RE-EDS in prospective drug design campaigns. We show that for the targets studied, RE-EDS is able to model up to 13 ligands simultaneously with high sampling efficiency, leading to a substantial decrease in computational cost when compared to pairwise methods.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - René Gall
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | | | - Salomé R. Rieder
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Emilia P. Barros
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Baumann H, Dybeck E, McClendon CL, Pickard FC, Gapsys V, Pérez-Benito L, Hahn DF, Tresadern G, Mathiowetz AM, Mobley DL. Broadening the Scope of Binding Free Energy Calculations Using a Separated Topologies Approach. J Chem Theory Comput 2023; 19:5058-5076. [PMID: 37487138 PMCID: PMC10413862 DOI: 10.1021/acs.jctc.3c00282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 07/26/2023]
Abstract
Binding free energy calculations predict the potency of compounds to protein binding sites in a physically rigorous manner and see broad application in prioritizing the synthesis of novel drug candidates. Relative binding free energy (RBFE) calculations have emerged as an industry-standard approach to achieve highly accurate rank-order predictions of the potency of related compounds; however, this approach requires that the ligands share a common scaffold and a common binding mode, restricting the methods' domain of applicability. This is a critical limitation since complex modifications to the ligands, especially core hopping, are very common in drug design. Absolute binding free energy (ABFE) calculations are an alternate method that can be used for ligands that are not congeneric. However, ABFE suffers from a known problem of long convergence times due to the need to sample additional degrees of freedom within each system, such as sampling rearrangements necessary to open and close the binding site. Here, we report on an alternative method for RBFE, called Separated Topologies (SepTop), which overcomes the issues in both of the aforementioned methods by enabling large scaffold changes between ligands with a convergence time comparable to traditional RBFE. Instead of only mutating atoms that vary between two ligands, this approach performs two absolute free energy calculations at the same time in opposite directions, one for each ligand. Defining the two ligands independently allows the comparison of the binding of diverse ligands without the artificial constraints of identical poses or a suitable atom-atom mapping. This approach also avoids the need to sample the unbound state of the protein, making it more efficient than absolute binding free energy calculations. Here, we introduce an implementation of SepTop. We developed a general and efficient protocol for running SepTop, and we demonstrated the method on four diverse, pharmaceutically relevant systems. We report the performance of the method, as well as our practical insights into the strengths, weaknesses, and challenges of applying this method in an industrial drug design setting. We find that the accuracy of the approach is sufficiently high to rank order ligands with an accuracy comparable to traditional RBFE calculations while maintaining the additional flexibility of SepTop.
Collapse
Affiliation(s)
- Hannah
M. Baumann
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Eric Dybeck
- Pfizer
Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Christopher L. McClendon
- Pfizer
Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Frank C. Pickard
- Pfizer
Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Vytautas Gapsys
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Laura Pérez-Benito
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - David F. Hahn
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gary Tresadern
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Alan M. Mathiowetz
- Pfizer
Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Rieder SR, Ries BJ, Kubincová A, Champion C, Barros EP, Hünenberger PH, Riniker S. Leveraging the Sampling Efficiency of RE-EDS in OpenMM Using a Shifted Reaction-Field With an Atom-Based Cutoff. J Chem Phys 2022; 157:104117. [DOI: 10.1063/5.0107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replica-exchange enveloping distribution sampling (RE-EDS) is a pathway-independent multistate free-energy method, currently implemented in the GROMOS software package for molecular dynamics (MD) simulations. It has a high intrinsic sampling efficiency as the interactions between the unperturbed particles have to be calculated only once for multiple end-states. As a result, RE-EDS is an attractive method for the calculation of relative solvation and binding free energies. An essential requirement for reaching this high efficiency is the separability of the nonbonded interactions into solute-solute, solute-environment, and environment-environment contributions. Such a partitioning is trivial when using a Coulomb term with a reaction-field (RF) correction to model the electrostatic interactions, but not when using lattice- sum schemes. To avoid cutoff artifacts, the RF correction is typically used in combination with a charge-group based cutoff, which is not supported by most small-molecule force fields and other MD engines. To address this issue, we investigate the combination of RE-EDS simulations with a recently introduced RF scheme including a shifting function that enables the rigorous calculation of RF electrostatics with atom-based cutoffs. The resulting approach is validated by calculating solvation free energies with the generalized AMBER force field (GAFF) in water and chloroform using both the GROMOS software package and a proof-of-concept implementation in OpenMM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich D-CHAB, Switzerland
| |
Collapse
|
6
|
Rieder SR, Ries B, Schaller K, Champion C, Barros EP, Hünenberger PH, Riniker S. Replica-Exchange Enveloping Distribution Sampling Using Generalized AMBER Force-Field Topologies: Application to Relative Hydration Free-Energy Calculations for Large Sets of Molecules. J Chem Inf Model 2022; 62:3043-3056. [PMID: 35675713 PMCID: PMC9241072 DOI: 10.1021/acs.jcim.2c00383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Free-energy differences
between pairs of end-states can be estimated
based on molecular dynamics (MD) simulations using standard pathway-dependent
methods such as thermodynamic integration (TI), free-energy perturbation,
or Bennett’s acceptance ratio. Replica-exchange enveloping
distribution sampling (RE-EDS), on the other hand, allows for the
sampling of multiple end-states in a single simulation without the
specification of any pathways. In this work, we use the RE-EDS method
as implemented in GROMOS together with generalized AMBER force-field
(GAFF) topologies, converted to a GROMOS-compatible format with a
newly developed GROMOS++ program amber2gromos, to
compute relative hydration free energies for a series of benzene derivatives.
The results obtained with RE-EDS are compared to the experimental
data as well as calculated values from the literature. In addition,
the estimated free-energy differences in water and in vacuum are compared
to values from TI calculations carried out with GROMACS. The hydration
free energies obtained using RE-EDS for multiple molecules are found
to be in good agreement with both the experimental data and the results
calculated using other free-energy methods. While all considered free-energy
methods delivered accurate results, the RE-EDS calculations required
the least amount of total simulation time. This work serves as a validation
for the use of GAFF topologies with the GROMOS simulation package
and the RE-EDS approach. Furthermore, the performance of RE-EDS for
a large set of 28 end-states is assessed with promising results.
Collapse
Affiliation(s)
- Salomé R Rieder
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin Ries
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Kay Schaller
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Candide Champion
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Emilia P Barros
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|