1
|
Yang Y, Cao TQ, He SH, Wang LC, He QH, Fan LZ, Huang YZ, Zhang HR, Wang Y, Dang YY, Wang N, Chai XK, Wang D, Jiang QH, Li XL, Liu C, Wang SY. Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation. Mil Med Res 2024; 11:81. [PMID: 39690407 DOI: 10.1186/s40779-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Innovative Center, Beijing Institute of Brain Disorders, Beijing, 100070, China.
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, 100070, China.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK.
| | - Tian-Qing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Sheng-Hong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK
| | - Lu-Chen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ling-Zhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong-Zhi Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao-Ran Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100080, China
| | - Yuan-Yuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100080, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiao-Ke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qiu-Hua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021; 35:68-85. [PMID: 34236624 PMCID: PMC8266715 DOI: 10.1007/s12028-021-01227-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Background/Objective For patients with disorders of consciousness (DoC) and their families, the search for new therapies has been a source of hope and frustration. Almost all clinical trials in patients with DoC have been limited by small sample sizes, lack of placebo groups, and use of heterogeneous outcome measures. As a result, few therapies have strong evidence to support their use; amantadine is the only therapy recommended by current clinical guidelines, specifically for patients with DoC caused by severe traumatic brain injury. To foster and advance development of consciousness-promoting therapies for patients with DoC, the Curing Coma Campaign convened a Coma Science Work Group to perform a gap analysis. Methods We consider five classes of therapies: (1) pharmacologic; (2) electromagnetic; (3) mechanical; (4) sensory; and (5) regenerative. For each class of therapy, we summarize the state of the science, identify gaps in knowledge, and suggest future directions for therapy development. Results Knowledge gaps in all five therapeutic classes can be attributed to the lack of: (1) a unifying conceptual framework for evaluating therapeutic mechanisms of action; (2) large-scale randomized controlled trials; and (3) pharmacodynamic biomarkers that measure subclinical therapeutic effects in early-phase trials. To address these gaps, we propose a precision medicine approach in which clinical trials selectively enroll patients based upon their physiological receptivity to targeted therapies, and therapeutic effects are measured by complementary behavioral, neuroimaging, and electrophysiologic endpoints. Conclusions This personalized approach can be realized through rigorous clinical trial design and international collaboration, both of which will be essential for advancing the development of new therapies and ultimately improving the lives of patients with DoC. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01227-y.
Collapse
|
3
|
Carvalho S, French M, Thibaut A, Lima W, Simis M, Leite J, Fregni F. Median nerve stimulation induced motor learning in healthy adults: A study of timing of stimulation and type of learning. Eur J Neurosci 2018; 48:1667-1679. [PMID: 29885268 DOI: 10.1111/ejn.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
Median nerve stimulation (MNS) has been shown to change brain metaplasticity over the somatosensory networks, based on a bottom-up mechanism and may improve motor learning. This exploratory study aimed to test the effects of MNS on implicit and explicit motor learning as measured by the serial reaction time task (SRTT) using a double-blind, sham-controlled, randomized trial, in which participants were allocated to one of three groups: (a) online active MNS during acquisition, (b) offline active MNS during early consolidation and (c) sham MNS. SRTT was performed at baseline, during the training phase (acquisition period), and 30 min after training. We assessed the effects of MNS on explicit and implicit motor learning at the end of the training/acquisition period and at retest. The group receiving online MNS (during acquisition) showed a significantly higher learning index for the explicit sequences compared to the offline group (MNS during early consolidation) and the sham group. The offline group also showed a higher learning index as compared to sham. Additionally, participants receiving online MNS recalled the explicit sentence significantly more than the offline MNS and sham groups. MNS effects on motor learning have a specific effect on type of learning (explicit vs. implicit) and are dependent on timing of stimulation (during acquisition vs. early consolidation). More research is needed to understand and optimize the effects of peripheral electrical stimulation on motor learning. Taken together, our results show that MNS, especially when applied during the acquisition phase, is a promising tool to modulate motor leaning.
Collapse
Affiliation(s)
- Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Melanie French
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aurore Thibaut
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Coma Science Group, GIGA-Consciousness, University and University Hospital of Liege, Liege, Belgium
| | - Wilrama Lima
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
- Univ Portucalense, Portucalense Institute for Human Development - INPP, Oporto, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
5
|
Fan D, Liao F, Wang Q. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles. CHAOS (WOODBURY, N.Y.) 2017; 27:073103. [PMID: 28764392 DOI: 10.1063/1.4991869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE1→TC1→Cortex1 and Cortex1→Cortex2→Cortex3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fucheng Liao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
6
|
Lagrosen Y, Travis F. Developing a neuropsychological measurement to capture workplace learning. JOURNAL OF MODELLING IN MANAGEMENT 2016. [DOI: 10.1108/jm2-10-2014-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of the paper is to examine variables to be included in a measurement instrument which measures workplace learning related to recent research into quality management and brain functioning.
Design/methodology/approach
A literature review was conducted, investigating measures of workplace learning as well as the connections between brain functioning and management. Further studies will use the brain integration scale to compare levels of brain integration with measures of workplace learning.
Findings
The variables “empathy”, “presence and communication”, “continuity”, “influence”, “development”, “work-integrated learning” and “flow” were found to be relevant from the literature review to be tested for inclusion in the measurement instrument. A measurement model with these variables included has been developed.
Research limitations/implications
This paper is conceptual in its nature. Empirical studies are needed to validate the propositions.
Practical implications
The proposed measurement instrument can be used by managers to gain insight into underlying mechanisms in the organizational culture that influence employees’ learning and potential for development. Thus, it can aid managers to achieve profound learning in their organizations, which is necessary for continuously maintaining high quality of products and services.
Social implications
For society, the implementation of the proposed measurement instrument in companies could lead to better health and higher job satisfaction among employees.
Originality/value
Traditional ways of measuring working environment are rarely connected to brain functioning of the employees. Only requiring small resources, this approach adds to an understanding of underlying mechanisms.
Collapse
|
7
|
Morales-Quezada L, Leite J, Carvalho S, Castillo-Saavedra L, Cosmo C, Fregni F. Behavioral effects of transcranial pulsed current stimulation (tPCS): Speed-accuracy tradeoff in attention switching task. Neurosci Res 2016; 109:48-53. [PMID: 26851768 DOI: 10.1016/j.neures.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) has been shown to increase inter-hemispheric coherence of brain oscillatory activity, mainly in fronto-temporal regions, leading to enhancement of functional connectivity across neural networks. The question is whether tPCS can modulate behavior significantly. Our aim was to identify the effects of tPCS on paired associative learning task (PALT) and attention switching task (AST), and to further categorize physiological autonomic responses by heart rate variability and electrodermal activity measurements before and after task performance. Thirty healthy volunteers were randomized to receive a single session of sham or active 2mA tPCS stimulation with a random frequency between 1 and 5Hz. We show that active tPCS significantly improved response time in the AST compared to sham stimulation, so that subjects who received active tPCS significantly exhibit decreased switching cost between repeat and switch trials. No differences were found in response accuracy on AST and PALT. No significant changes were observed in physiological parameters. Based on our results, we suggest that tPCS has a more pronounced effect on tasks that require the increase of functional connectivity across pre-existent neural circuitry, rather than on tasks that require the development of new learning circuits or the creation of new connections.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; School of Health Sciences, De Montfort University, Leicester, UK
| | - Jorge Leite
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Laura Castillo-Saavedra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Camila Cosmo
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Post Graduate Program, Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
9
|
Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions. Trends Neurosci 2015; 38:3-12. [DOI: 10.1016/j.tins.2014.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
|
10
|
Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol 2013; 25:7-14. [PMID: 24709594 DOI: 10.1016/j.conb.2013.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022]
Abstract
Brain injury profoundly affects global brain dynamics, and these changes are manifest in the electroencephalogram (EEG). Despite the heterogeneity of injury mechanisms and the modularity of brain function, there is a commonality of dynamical features that characterize the EEG along the gamut from coma to recovery. After severest injury, EEG activity is concentrated below 1 Hz. In minimally conscious state during wakefulness, there is a peak of activity in the 3-7 Hz range, often coherent across the brain, and often also activity in the beta (15-30 Hz) range. These spectral changes likely result from varying degrees of functional deafferentation at thalamic and cortical levels. EEG-based indices of brain dynamics that go beyond these simple spectral measures may provide further diagnostic information and physiologic insights.
Collapse
|
11
|
Hindriks R, van Putten MJAM. Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. Neuroimage 2012; 70:150-63. [PMID: 23266701 DOI: 10.1016/j.neuroimage.2012.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 11/15/2022] Open
Abstract
Although a large number of studies have been devoted to establishing correlations between changes in amplitude and frequency of EEG alpha oscillations and cognitive processes, it is currently unclear through which physiological mechanisms such changes are brought about. In this study we use a biophysical model of EEG generation to gain a fundamental understanding of the functional changes within the thalamo-cortical system that might underly such alpha responses. The main result of this study is that, although the physiology of the thalamo-cortical system is characterized by a large number of parameters, alpha responses effectively depend on only three variables. Physiologically, these variables determine the resonance properties of feedforward, cortico-thalamo-cortical, and intra-cortical circuits. By examining the effect of modulations of these resonances on the amplitude and frequency of EEG alpha oscillations, it is established that the model can reproduce the variety of experimentally observed alpha responses, as well as the experimental finding that changes in alpha amplitude are typically an order of magnitude larger than changes in alpha frequency. The modeling results are also in line with the fact that alpha responses often correlate linearly with indices characterizing cognitive processes. By investigating the effect of synaptic and intrinsic neuronal parameters, we find that alpha responses reflect changes in cortical activation, which is consistent with the hypothesis that alpha activity serves to selectively inhibit cortical regions during cognitive processing demands. As an example of how these analyses can be applied to specific experimental protocols, we reproduce benzodiazepine-induced alpha responses and clarify the putative underlying thalamo-cortical mechanisms. The findings reported in this study provide a fundamental physiological framework within which alpha responses observed in specific experimental protocols can be understood.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands.
| | | |
Collapse
|
12
|
Saalmann YB, Kastner S. Cognitive and perceptual functions of the visual thalamus. Neuron 2011; 71:209-23. [PMID: 21791281 DOI: 10.1016/j.neuron.2011.06.027] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
The thalamus is classically viewed as passively relaying information to the cortex. However, there is growing evidence that the thalamus actively regulates information transmission to the cortex and between cortical areas using a variety of mechanisms, including the modulation of response magnitude, firing mode, and synchrony of neurons according to behavioral demands. We discuss how the visual thalamus contributes to attention, awareness, and visually guided actions, to present a general role for the thalamus in perception and cognition.
Collapse
Affiliation(s)
- Yuri B Saalmann
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | | |
Collapse
|
13
|
Victor JD, Drover JD, Conte MM, Schiff ND. Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15631-8. [PMID: 21368177 PMCID: PMC3176602 DOI: 10.1073/pnas.1012168108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher brain function depends on task-dependent information flow between cortical regions. Converging lines of evidence suggest that interactions between cortical regions and the central thalamus play a key role in establishing the dynamic patterns of functional connectivity that normally support these processes. In patients with chronic disturbances of cognitive function due to severe brain injury, dysfunction of this circuitry likely plays a crucial role in pathogenesis. However, assaying thalamocortical interactions is challenging even in healthy subjects and more so in severely impaired patients. To approach this problem, we apply a dynamical-systems approach to motivate an analysis of the electroencephalogram (EEG). We begin with a model for a single thalamocortical module [Robinson PA, Rennie CJ, Rowe DL (2002) Phys Rev E Stat Nonlin Soft Matter Phys 65:041924; Robinson PA, Rennie CJ, Wright JJ, Bourke PD (1998) Phys Rev E Stat Nonlin Soft Matter Phys 58:3557-3571]. When two such modules interact via shared thalamic inhibition, multistable behavior emerges; each mode is characterized by a different pattern of coherence between cortical regions. This observation suggests that changing patterns of cortical coherence are a hallmark of normal thalamocortical dynamics. In a preliminary study, we test this idea by analyzing the EEG of a patient with chronic brain injury, who has a marked improvement in behavior and frontal brain metabolism in response to zolpidem. The analysis shows that following zolpidem administration, changing patterns of coherence are identified between the frontal lobes and between frontal and distant brain regions. These observations support the role of the central thalamus in the organization of patterns of cortical interactions and suggest how indexes of thalamocortical dynamics can be extracted from the EEG.
Collapse
Affiliation(s)
- Jonathan D Victor
- Division of Systems Neurology and Neuroscience, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
14
|
Shaposhnyk V, Villa AEP. Reciprocal projections in hierarchically organized evolvable neural circuits affect EEG-like signals. Brain Res 2011; 1434:266-76. [PMID: 21890119 DOI: 10.1016/j.brainres.2011.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/20/2011] [Accepted: 08/08/2011] [Indexed: 11/26/2022]
Abstract
Modular architecture is a hallmark of many brain circuits. In the cerebral cortex, in particular, it has been observed that reciprocal connections are often present between functionally interconnected areas that are hierarchically organized. We investigate the effect of reciprocal connections in a network of modules of simulated spiking neurons. The neural activity is recorded by means of virtual electrodes and EEG-like signals, called electrochipograms (EChG), analyzed by time- and frequency-domain methods. A major feature of our approach is the implementation of important bio-inspired processes that affect the connectivity within a neural module: synaptogenesis, cell death, spike-timing-dependent plasticity and synaptic pruning. These bio-inspired processes drive the build-up of auto-associative links within each module, which generate an areal activity, recorded by EChG, that reflect the changes in the corresponding functional connectivity within and between neuronal modules. We found that circuits with intra-layer reciprocal projections exhibited enhanced stimulus-locked response. We show evidence that all networks of modules are able to process and maintain patterns of activity associated with the stimulus after its offset. The presence of feedback and horizontal projections was necessary to evoke cross-layer coherence in bursts of -frequency at regular intervals. These findings bring new insights to the understanding of the relation between the functional organization of neural circuits and the electrophysiological signals generated by large cell assemblies. This article is part of a Special Issue entitled "Neural Coding".
Collapse
Affiliation(s)
- Vladyslav Shaposhnyk
- Neuroheuristic Research Group, Information Science Inst., Univ. of Lausanne, Switzerland
| | | |
Collapse
|