1
|
Van Pottelbergh T, Drion G, Sepulchre R. From Biophysical to Integrate-and-Fire Modeling. Neural Comput 2021; 33:563-589. [PMID: 33400899 DOI: 10.1162/neco_a_01353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This article proposes a methodology to extract a low-dimensional integrate-and-fire model from an arbitrarily detailed single-compartment biophysical model. The method aims at relating the modulation of maximal conductance parameters in the biophysical model to the modulation of parameters in the proposed integrate-and-fire model. The approach is illustrated on two well-documented examples of cellular neuromodulation: the transition between type I and type II excitability and the transition between spiking and bursting.
Collapse
Affiliation(s)
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium
| | - Rodolphe Sepulchre
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.
| |
Collapse
|
2
|
Abu-Hassan K, Taylor JD, Morris PG, Donati E, Bortolotto ZA, Indiveri G, Paton JFR, Nogaret A. Optimal solid state neurons. Nat Commun 2019; 10:5309. [PMID: 31796727 PMCID: PMC6890780 DOI: 10.1038/s41467-019-13177-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.
Collapse
Affiliation(s)
- Kamal Abu-Hassan
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joseph D Taylor
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Paul G Morris
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Elisa Donati
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Zuner A Bortolotto
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.,Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Alain Nogaret
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Moye MJ, Diekman CO. Data Assimilation Methods for Neuronal State and Parameter Estimation. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2018; 8:11. [PMID: 30094571 PMCID: PMC6085278 DOI: 10.1186/s13408-018-0066-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/11/2018] [Indexed: 05/05/2023]
Abstract
This tutorial illustrates the use of data assimilation algorithms to estimate unobserved variables and unknown parameters of conductance-based neuronal models. Modern data assimilation (DA) techniques are widely used in climate science and weather prediction, but have only recently begun to be applied in neuroscience. The two main classes of DA techniques are sequential methods and variational methods. We provide computer code implementing basic versions of a method from each class, the Unscented Kalman Filter and 4D-Var, and demonstrate how to use these algorithms to infer several parameters of the Morris-Lecar model from a single voltage trace. Depending on parameters, the Morris-Lecar model exhibits qualitatively different types of neuronal excitability due to changes in the underlying bifurcation structure. We show that when presented with voltage traces from each of the various excitability regimes, the DA methods can identify parameter sets that produce the correct bifurcation structure even with initial parameter guesses that correspond to a different excitability regime. This demonstrates the ability of DA techniques to perform nonlinear state and parameter estimation and introduces the geometric structure of inferred models as a novel qualitative measure of estimation success. We conclude by discussing extensions of these DA algorithms that have appeared in the neuroscience literature.
Collapse
Affiliation(s)
- Matthew J. Moye
- Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA
| | - Casey O. Diekman
- Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA
| |
Collapse
|
4
|
Gjorgjieva J, Drion G, Marder E. Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr Opin Neurobiol 2016; 37:44-52. [PMID: 26774694 PMCID: PMC4860045 DOI: 10.1016/j.conb.2015.12.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
Despite advances in experimental and theoretical neuroscience, we are still trying to identify key biophysical details that are important for characterizing the operation of brain circuits. Biological mechanisms at the level of single neurons and synapses can be combined as 'building blocks' to generate circuit function. We focus on the importance of capturing multiple timescales when describing these intrinsic and synaptic components. Whether inherent in the ionic currents, the neuron's complex morphology, or the neurotransmitter composition of synapses, these multiple timescales prove crucial for capturing the variability and richness of circuit output and enhancing the information-carrying capacity observed across nervous systems.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, United States
| | - Guillaume Drion
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, United States; Department of Electrical Engineering and Computer Science, University of Liège, Liège B-4000, Belgium
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
5
|
Nogaret A, O'Callaghan EL, Lataro RM, Salgado HC, Meliza CD, Duncan E, Abarbanel HDI, Paton JFR. Silicon central pattern generators for cardiac diseases. J Physiol 2015; 593:763-74. [PMID: 25433077 DOI: 10.1113/jphysiol.2014.282723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022] Open
Abstract
Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.
Collapse
Affiliation(s)
- Alain Nogaret
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Vavoulis DV, Straub VA, Aston JAD, Feng J. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons. PLoS Comput Biol 2012; 8:e1002401. [PMID: 22396632 PMCID: PMC3291554 DOI: 10.1371/journal.pcbi.1002401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/12/2012] [Indexed: 11/29/2022] Open
Abstract
Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm), often in combination with a local search method (such as gradient descent) in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a potentially useful tool in the construction of biophysical neuron models. Parameter estimation is a problem of central importance and, perhaps, the most laborious task in biophysical modeling of neurons and neural networks. An emerging trend is to treat parameter estimation in this context as yet another statistical inference problem, which can be tackled using well-established methods from Computational Statistics. Inspired by these recent advances, we adopted a self-organizing state-space-model approach augmented with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy in order to estimate a large number of parameters in a number of Hodgkin-Huxley-type models of single neurons. Parameter estimation was based on noisy electrophysiological data and involved the maximal conductances, reversal potentials, levels of noise and, unlike most mainstream work, the kinetics of ionic currents in the examined models. Our main conclusion was that parameters in complex, conductance-based neuron models can be inferred using the aforementioned methodology, if sufficiently informative priors regarding the unknown model parameters are available. Importantly, the use of an adaptive algorithm for sampling new parameter vectors significantly reduced the variance of parameter estimates. Flexibility and scalability are additional advantages of the proposed method, which is particularly suited to resolve high-dimensional inference problems.
Collapse
Affiliation(s)
- Dimitrios V. Vavoulis
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- * E-mail: (DVV); (JF)
| | - Volko A. Straub
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | - John A. D. Aston
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Centre for Computational Systems Biology, Fudan University, Shanghai, PR China
- * E-mail: (DVV); (JF)
| |
Collapse
|
7
|
Kostuk M, Toth BA, Meliza CD, Margoliash D, Abarbanel HDI. Dynamical estimation of neuron and network properties II: Path integral Monte Carlo methods. BIOLOGICAL CYBERNETICS 2012; 106:155-67. [PMID: 22526358 DOI: 10.1007/s00422-012-0487-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/14/2012] [Indexed: 05/07/2023]
Abstract
Hodgkin-Huxley (HH) models of neuronal membrane dynamics consist of a set of nonlinear differential equations that describe the time-varying conductance of various ion channels. Using observations of voltage alone we show how to estimate the unknown parameters and unobserved state variables of an HH model in the expected circumstance that the measurements are noisy, the model has errors, and the state of the neuron is not known when observations commence. The joint probability distribution of the observed membrane voltage and the unobserved state variables and parameters of these models is a path integral through the model state space. The solution to this integral allows estimation of the parameters and thus a characterization of many biological properties of interest, including channel complement and density, that give rise to a neuron's electrophysiological behavior. This paper describes a method for directly evaluating the path integral using a Monte Carlo numerical approach. This provides estimates not only of the expected values of model parameters but also of their posterior uncertainty. Using test data simulated from neuronal models comprising several common channels, we show that short (<50 ms) intracellular recordings from neurons stimulated with a complex time-varying current yield accurate and precise estimates of the model parameters as well as accurate predictions of the future behavior of the neuron. We also show that this method is robust to errors in model specification, supporting model development for biological preparations in which the channel expression and other biophysical properties of the neurons are not fully known.
Collapse
Affiliation(s)
- Mark Kostuk
- Department of Physics, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0402, USA
| | | | | | | | | |
Collapse
|