Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
PLoS Comput Biol 2016;
12:e1004954. [PMID:
27213810 PMCID:
PMC4877102 DOI:
10.1371/journal.pcbi.1004954]
[Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model’s feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.
From one moment to the next, in an ever-changing world, and awash in a deluge of sensory data, the brain fluidly guides our actions throughout an astonishing variety of tasks. Processing this ongoing bombardment of information is a fundamental problem faced by its underlying neural circuits. Given that the structure of our actions along with the organization of the environment in which they are performed can be intuitively decomposed into sequences of simpler patterns, an encoding strategy reflecting the temporal nature of these patterns should offer an efficient approach for assembling more complex memories and behaviors. We present a model that demonstrates how activity could propagate through recurrent cortical microcircuits as a result of a learning rule based on neurobiologically plausible time courses and dynamics. The model predicts that the interaction between several learning and dynamical processes constitute a compound mnemonic engram that can flexibly generate sequential step-wise increases of activity within neural populations.
Collapse