1
|
Yaghouby F, O’Hara BF, Sunderam S. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements. Int J Neural Syst 2016; 26:1650017. [DOI: 10.1142/s0129065716500179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The proportion, number of bouts, and mean bout duration of different vigilance states (Wake, NREM, REM) are useful indices of dynamics in experimental sleep research. These metrics are estimated by first scoring state, sometimes using an algorithm, based on electrophysiological measurements such as the electroencephalogram (EEG) and electromyogram (EMG), and computing their values from the score sequence. Isolated errors in the scores can lead to large discrepancies in the estimated sleep metrics. But most algorithms score sleep by classifying the state from EEG/EMG features independently in each time epoch without considering the dynamics across epochs, which could provide contextual information. The objective here is to improve estimation of sleep metrics by fitting a probabilistic dynamical model to mouse EEG/EMG data and then predicting the metrics from the model parameters. Hidden Markov models (HMMs) with multivariate Gaussian observations and Markov state transitions were fitted to unlabeled 24-h EEG/EMG feature time series from 20 mice to model transitions between the latent vigilance states; a similar model with unbiased transition probabilities served as a reference. Sleep metrics predicted from the HMM parameters did not deviate significantly from manual estimates except for rapid eye movement sleep (REM) ([Formula: see text]; Wilcoxon signed-rank test). Changes in value from Light to Dark conditions correlated well with manually estimated differences (Spearman’s rho 0.43–0.84) except for REM. HMMs also scored vigilance state with over 90% accuracy. HMMs of EEG/EMG features can therefore characterize sleep dynamics from EEG/EMG measurements, a prerequisite for characterizing the effects of perturbation in sleep monitoring and control applications.
Collapse
Affiliation(s)
- Farid Yaghouby
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Bruce F. O’Hara
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Selvaraj P, Sleigh JW, Kirsch HE, Szeri AJ. Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex. Phys Rev E 2016; 93:012416. [PMID: 26871110 DOI: 10.1103/physreve.93.012416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Optogenetics provides a method of neuron stimulation that has high spatial, temporal, and cell-type specificity. Here we present a model of optogenetic feedback control that targets the inhibitory population, which expresses light-sensitive channelrhodopsin-2 channels, in a mean-field model of undifferentiated cortex that is driven to seizures. The inhibitory population is illuminated with an intensity that is a function of electrode measurements obtained via the cortical model. We test the efficacy of this control method on seizurelike activity observed in two parameter spaces of the cortical model that most closely correspond to seizures observed in patients. We also compare the effect of closed-loop and open-loop control on seizurelike activity using a less-complicated ordinary differential equation model of the undifferentiated cortex in parameter space. Seizurelike activity is successfully suppressed in both parameter planes using optimal illumination intensities less likely to have adverse effects on cortical tissue.
Collapse
Affiliation(s)
- Prashanth Selvaraj
- Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740, USA
| | - Jamie W Sleigh
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Heidi E Kirsch
- Departments of Neurology and Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, USA
| | - Andrew J Szeri
- Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740, USA
- Center for Neural Engineering and Prostheses, University of California, Berkeley, California 94720-3370, USA
| |
Collapse
|
3
|
Liang Z, Duan X, Su C, Voss L, Sleigh J, Li X. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia. PLoS One 2015; 10:e0145959. [PMID: 26720495 PMCID: PMC4697853 DOI: 10.1371/journal.pone.0145959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022] Open
Abstract
Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM--with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C(eff)) based on the actual drug infusion regimen. The NMM model took C(eff) as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients' condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80 ± 0.13 (mean ± standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77 ± 0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuejing Duan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Cui Su
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Logan Voss
- Department of Anesthesia, Waikato Hospital, Hamilton, New Zealand
| | - Jamie Sleigh
- Department of Anesthesia, Waikato Hospital, Hamilton, New Zealand
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Houmani N, Dreyfus G, Vialatte FB. Epoch-based Entropy for Early Screening of Alzheimer’s Disease. Int J Neural Syst 2015; 25:1550032. [DOI: 10.1142/s012906571550032x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer’s disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon’s entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.
Collapse
Affiliation(s)
- N. Houmani
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- SIGMA (SIGnal processing and MAchine learning) Laboratory, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - G. Dreyfus
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- SIGMA (SIGnal processing and MAchine learning) Laboratory, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - F. B. Vialatte
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Brain Plasticity Laboratory, CNRS UMR 8249, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
5
|
Abeysuriya RG, Robinson PA. Real-time automated EEG tracking of brain states using neural field theory. J Neurosci Methods 2015; 258:28-45. [PMID: 26523766 DOI: 10.1016/j.jneumeth.2015.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
Abstract
A real-time fitting system is developed and used to fit the predictions of an established physiologically-based neural field model to electroencephalographic spectra, yielding a trajectory in a physiological parameter space that parametrizes intracortical, intrathalamic, and corticothalamic feedbacks as the arousal state evolves continuously over time. This avoids traditional sleep/wake staging (e.g., using Rechtschaffen-Kales stages), which is fundamentally limited because it forces classification of continuous dynamics into a few discrete categories that are neither physiologically informative nor individualized. The classification is also subject to substantial interobserver disagreement because traditional staging relies in part on subjective evaluations. The fitting routine objectively and robustly tracks arousal parameters over the course of a full night of sleep, and runs in real-time on a desktop computer. The system developed here supersedes discrete staging systems by representing arousal states in terms of physiology, and provides an objective measure of arousal state which solves the problem of interobserver disagreement. Discrete stages from traditional schemes can be expressed in terms of model parameters for backward compatibility with prior studies.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
6
|
A probabilistic method for determining cortical dynamics during seizures. J Comput Neurosci 2015; 38:559-75. [DOI: 10.1007/s10827-015-0554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 03/08/2015] [Accepted: 03/12/2015] [Indexed: 11/26/2022]
|
7
|
Hight DF, Dadok VM, Szeri AJ, García PS, Voss L, Sleigh JW. Emergence from general anesthesia and the sleep-manifold. Front Syst Neurosci 2014; 8:146. [PMID: 25165436 PMCID: PMC4131673 DOI: 10.3389/fnsys.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/24/2014] [Indexed: 12/17/2022] Open
Abstract
The electroencephalogram (EEG) during the re-establishment of consciousness after general anesthesia and surgery varies starkly between patients. Can the EEG during this emergence period provide a means of estimating the underlying biological processes underpinning the return of consciousness? Can we use a model to infer these biological processes from the EEG patterns? A frontal EEG was recorded from 84 patients. Ten patients were chosen for state-space analysis. Five showed archetypal emergences; which consisted of a progressive decrease in alpha power and increase peak alpha frequency before return of responsiveness. The five non-archetypal emergences showed almost no spectral EEG changes (even as the volatile general anesthetic decreased) and then an abrupt return of responsiveness. We used Bayesian methods to estimate the likelihood of an EEG pattern corresponding to the position of the patient on a 2-dimensional manifold in a state space of excitatory connection strength vs. change in intrinsic resting neuronal membrane conductivity. We could thus visualize the trajectory of each patient in the state-space during their emergence period. The patients who followed an archetypal emergence displayed a very consistent pattern; consisting of progressive increase in conductivity, and a temporary period of increased connection strength before return of responsiveness. The non-archetypal emergence trajectories remained fixed in a region of phase space characterized by a relatively high conductivity and low connection strength throughout emergence. This unexpected progressive increase in conductivity during archetypal emergence may be due to an abating of the surgical stimulus during this period. Periods of high connection strength could represent forays into dissociated consciousness, but the model suggests all patients reposition near the fold in the state space to take advantage of bi-stable cortical dynamics before transitioning to consciousness.
Collapse
Affiliation(s)
- Darren F Hight
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| | - Vera M Dadok
- Department of Mechanical Engineering and Center for Neural Engineering and Prostheses, University of California Berkeley, CA, USA
| | - Andrew J Szeri
- Department of Mechanical Engineering and Center for Neural Engineering and Prostheses, University of California Berkeley, CA, USA
| | - Paul S García
- Department of Anesthesiology, Atlanta VA Medical Center/Emory University Atlanta, GA, USA
| | - Logan Voss
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| | - Jamie W Sleigh
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| |
Collapse
|