1
|
Zeppenfeld K, Rademaker R, Al-Ahmad A, Carbucicchio C, De Chillou C, Cvek J, Ebert M, Ho G, Kautzner J, Lambiase P, Merino JL, Lloyd M, Misra S, Pruvot E, Sapp J, Schiappacasse L, Sramko M, Stevenson WG, Zei PC. Patient selection, ventricular tachycardia substrate delineation, and data transfer for stereotactic arrhythmia radioablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society. Europace 2025; 27:euae214. [PMID: 39177652 PMCID: PMC12041921 DOI: 10.1093/europace/euae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive, and promising treatment option for ventricular arrhythmias (VAs). It has been applied in highly selected patients mainly as bailout procedure, when (multiple) catheter ablations, together with anti-arrhythmic drugs, were unable to control the VAs. Despite the increasing clinical use, there is still limited knowledge of the acute and long-term response of normal and diseased myocardium to STAR. Acute toxicity appeared to be reasonably low, but potential late adverse effects may be underreported. Among published studies, the provided methodological information is often limited, and patient selection, target volume definition, methods for determination and transfer of target volume, and techniques for treatment planning and execution differ across studies, hampering the pooling of data and comparison across studies. In addition, STAR requires close and new collaboration between clinical electrophysiologists and radiation oncologists, which is facilitated by shared knowledge in each collaborator's area of expertise and a common language. This clinical consensus statement provides uniform definition of cardiac target volumes. It aims to provide advice in patient selection for STAR including aetiology-specific aspects and advice in optimal cardiac target volume identification based on available evidence. Safety concerns and the advice for acute and long-term monitoring including the importance of standardized reporting and follow-up are covered by this document. Areas of uncertainty are listed, which require high-quality, reliable pre-clinical and clinical evidence before the expansion of STAR beyond clinical scenarios in which proven therapies are ineffective or unavailable.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Rademaker
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Amin Al-Ahmad
- Electrophysiology, Texas Cardiac Arrhythmia Institute, Austin, TX, USA
| | | | - Christian De Chillou
- CHU de Nancy, Cardiology, Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Les Nancy, France
| | - Jakub Cvek
- Radiation Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Micaela Ebert
- Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Gordon Ho
- Division of Cardiology, Section of Cardiac Electrophysiology, University of California San Diego, La Jolla, CA, USA
| | - Josef Kautzner
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Pier Lambiase
- Cardiology Department, University College London, London, UK
| | | | - Michael Lloyd
- Emory Electrophysiology, Electrophysiology Lab Director, EUH, Emory University Hospital, Atlanta, GA, USA
| | - Satish Misra
- Atrium Health Sanger Heart Vascular Institute Kenilworth, Charlotte, NC, USA
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - John Sapp
- QEII Health Sciences Center, Halifax Infirmary Site, Halifax, NS, Canada
| | - Luis Schiappacasse
- Department of Cardiology, Service de Radio-Oncologie, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - Marek Sramko
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Paul C Zei
- Professor of Medicine, Cardiac Electrophysiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Waight MC, Prakosa A, Li AC, Bunce N, Marciniak A, Trayanova NA, Saba MM. Personalized Heart Digital Twins Detect Substrate Abnormalities in Scar-Dependent Ventricular Tachycardia. Circulation 2025; 151:521-533. [PMID: 39758009 PMCID: PMC11987040 DOI: 10.1161/circulationaha.124.070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Current outcomes from catheter ablation for scar-dependent ventricular tachycardia (VT) are limited by high recurrence rates and long procedure durations. Personalized heart digital twin technology presents a noninvasive method of predicting critical substrate in VT, and its integration into clinical VT ablation offers a promising solution. The accuracy of the predictions of digital twins to detect invasive substrate abnormalities is unknown. We present the first prospective analysis of digital twin technology in predicting critical substrate abnormalities in VT. METHODS Heart digital twin models were created from 18 patients with scar-dependent VT undergoing catheter ablation. Contrast-enhanced cardiac magnetic resonance images were used to reconstruct finite-element meshes, onto which regional electrophysiological properties were applied. Rapid-pacing protocols were used to induce VTs and to define the VT circuits. Predicted optimum ablation sites to terminate all VTs in the models were identified. Invasive substrate mapping was performed, and the digital twins were merged with the electroanatomical map. Electrogram abnormalities and regions of conduction slowing were compared between digital twin-predicted sites and nonpredicted areas. RESULTS Electrogram abnormalities were significantly more frequent in digital twin-predicted sites compared with nonpredicted sites (468/1029 [45.5%] versus 519/1611 [32.2%]; P<0.001). Electrogram duration was longer at predicted sites compared with nonpredicted sites (82.0±25.9 milliseconds versus 69.7±22.3 milliseconds; P<0.001). Digital twins correctly identified 21 of 26 (80.8%) deceleration zones seen on isochronal late activation mapping. CONCLUSIONS Digital twin-predicted sites display a higher prevalence of abnormal and prolonged electrograms compared with nonpredicted sites and accurately identify regions of conduction slowing. Digital twin technology may help improve substrate-based VT ablation. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04632394.
Collapse
Affiliation(s)
- Michael C Waight
- City St. George's, University of London, UK (M.C.W., A.C.L., M.M.S.)
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD (M.C.W., A.P., N.A.T.)
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD (M.C.W., A.P., N.A.T.)
| | - Anthony C Li
- City St. George's, University of London, UK (M.C.W., A.C.L., M.M.S.)
- St. George's University Hospitals NHS Foundation Trust, London, UK (A.C.L., N.B., A.M., M.M.S.)
| | - Nick Bunce
- St. George's University Hospitals NHS Foundation Trust, London, UK (A.C.L., N.B., A.M., M.M.S.)
| | - Anna Marciniak
- St. George's University Hospitals NHS Foundation Trust, London, UK (A.C.L., N.B., A.M., M.M.S.)
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD (M.C.W., A.P., N.A.T.)
| | - Magdi M Saba
- City St. George's, University of London, UK (M.C.W., A.C.L., M.M.S.)
- St. George's University Hospitals NHS Foundation Trust, London, UK (A.C.L., N.B., A.M., M.M.S.)
- Cleveland Clinic London, UK (M.M.S.)
| |
Collapse
|
3
|
Stevenson WG, Richardson TD, Kanagasundram AN, Tandri H. State of the Art: Mapping Strategies to Guide Ablation in Ischemic Heart Disease. JACC Clin Electrophysiol 2024; 10:2744-2761. [PMID: 39520431 DOI: 10.1016/j.jacep.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Catheter ablation to prevent ventricular tachycardia (VT) that emerges late after a myocardial infarction aims to interrupt the re-entry substrate. Interruption of potential channels and regions of slow conduction that can be identified during stable sinus or paced rhythm is often effective and a number of substrate markers for guiding this approach have been described. While there is substantial agreement with different markers in some patients, the different markers select different regions for ablation in others. Mapping during VT to identify critical re-entry circuit isthmuses is likely more specific, and most useful when VT is incessant or frequent during the procedure or when sinus rhythm substrate ablation fails. Both approaches are often combined. These methods for identifying and characterizing post-infarct-related arrhythmia substrate and the re-entry circuits are reviewed.
Collapse
Affiliation(s)
- William G Stevenson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Travis D Richardson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arvindh N Kanagasundram
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harikrishna Tandri
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Gigli L, Preda A, Coluzzi D, Sartore M, Vila M, Carbonaro M, Baroni M, Varrenti M, Vargiu S, Guarracini F, Frontera A, Pannone L, Chierchia GB, De Asmundis C, Mazzone P, Sassi R. Left atrial spatial entropy: a novel tool for electrophysiological substrate characterization in atrial fibrillation. Front Physiol 2024; 15:1474568. [PMID: 39665050 PMCID: PMC11631849 DOI: 10.3389/fphys.2024.1474568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Electrical remodeling has been linked to the progression and recurrence of atrial fibrillation (AF) after catheter ablation (CA). Substrate mapping based solely on a voltage amplitude electrogram (EGM) does not provide a comprehensive understanding of the left atrial (LA) disease. The aim of this study is to assess left atrial spatial entropy (LASE) from voltage maps routinely obtained during AF ablation to further characterize the LA substrate. Materials and Methods High-density electroanatomic maps (EAMs) of 27 patients with paroxysmal or persistent AF undergoing routine CA were prospectively collected. Computational post-processing was performed on the voltage maps. Using the Shannon entropy model, the probability distribution of the amplitude range values associated with each point of the map was used to measure LASE. Finally, correlations between LASE and clinical and electrophysiological characteristics of AF were explored. Results LASE differentiated between patients with paroxysmal and persistent AF (6.45 ± 0.41 vs. 5.87 ± 0.53; p = 0.028) and patients with normal and abnormal LA substrate (6.42 ± 0.42 vs. 5.87 ± 0.56; p = 0.043), independent of the basal rhythm during EM acquisition (6.33 ± 0.41 vs. 6.11 ± 0.63; p = 0.619). Accordance between LASE and EAMs was assessed by ROC analysis (AUC: 0.81; C.I.: 0.62-0.99; Youden index: 6.06; sensitivity: 80%; and specificity: 80%). Patients with the lowest LASE reported AF recurrence at the follow-up. Conclusion LASE may play a role in the further characterization of the LA substrate and the type of AF, independent of basal rhythm.
Collapse
Affiliation(s)
- Lorenzo Gigli
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel – Vrije Universiteit Brussel, Brussels, Belgium
| | - Alberto Preda
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Davide Coluzzi
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Marta Sartore
- Department of Computer Science, University of Milan, Milan, Italy
| | - Muhamed Vila
- Department of Computer Science, University of Milan, Milan, Italy
| | - Marco Carbonaro
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Matteo Baroni
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Marisa Varrenti
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Sara Vargiu
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Fabrizio Guarracini
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Antonio Frontera
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel – Vrije Universiteit Brussel, Brussels, Belgium
| | - Gian Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel – Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel – Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrizio Mazzone
- De Gasperis Cardio Center, Electrophysiology Unit, Niguarda Hospital, Milan, Italy
| | - Roberto Sassi
- Department of Computer Science, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Chin SH, Allen E, Brack KE, Ng GA. Autonomic neuro-cardiac profile of electrical, structural and neuronal remodeling in myocardial infarction-induced heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100044. [PMID: 37745157 PMCID: PMC10512199 DOI: 10.1016/j.jmccpl.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Aims Heart failure is a clinical syndrome typified by abnormal autonomic tone, impaired ventricular function, and increased arrhythmic vulnerability. This study aims to examine electrophysiological, structural and neuronal remodeling following myocardial infarction in a rabbit heart failure model to establish its neuro-cardiac profile. Methods and results Weight-matched adult male New Zealand White rabbits (3.2 ± 0.1 kg, n = 25) were randomized to have coronary ligation surgeries (HF group, n = 13) or sham procedures (SHM group, n = 12). Transthoracic echocardiography was performed six weeks post-operatively. On week 8, dual-innervated Langendorff-perfused heart preparations were set up for terminal experiments. Seventeen hearts (HF group, n = 10) underwent ex-vivo cardiac MRI. Twenty-two hearts (HF group, n = 7) were examined histologically. Electrical remodeling and abnormal autonomic profile were evident in HF rabbits with exaggerated sympathetic and attenuated vagal effect on ventricular fibrillation threshold, ventricular refractoriness and restitution curves, in addition to increased spatial restitution dispersion. Histologically, there was significant neuronal enlargement at the heart hila and conus arteriosus in HF. Structural remodeling was characterized by quantifiable myocardial scarring, enlarged left ventricles, altered ventricular geometry and impaired contractility. Conclusion In an infarct-induced rabbit heart failure model, extensive structural, neuronal and electrophysiological remodeling in conjunction with abnormal autonomic profile provide substrates for ventricular arrhythmias.
Collapse
Affiliation(s)
- Shui Hao Chin
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Emily Allen
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - Kieran E. Brack
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - G. André Ng
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| |
Collapse
|
6
|
Baldazzi G, Orrù M, Viola G, Pani D. Computer-aided detection of arrhythmogenic sites in post-ischemic ventricular tachycardia. Sci Rep 2023; 13:6906. [PMID: 37106017 PMCID: PMC10140038 DOI: 10.1038/s41598-023-33866-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Nowadays, catheter-based ablation in patients with post-ischemic ventricular tachycardia (VT) is performed in arrhythmogenic sites identified by electrophysiologists by visual inspection during electroanatomic mapping. This work aims to present the development of machine learning tools aiming at supporting clinicians in the identification of arrhythmogenic sites by exploiting innovative features that belong to different domains. This study included 1584 bipolar electrograms from nine patients affected by post-ischemic VT. Different features were extracted in the time, time scale, frequency, and spatial domains and used to train different supervised classifiers. Classification results showed high performance, revealing robustness across the different classifiers in terms of accuracy, true positive, and false positive rates. The combination of multi-domain features with the ensemble tree is the most effective solution, exhibiting accuracies above 93% in the 10-time 10-fold cross-validation and 84% in the leave-one-subject-out validation. Results confirmed the effectiveness of the proposed features and their potential use in a computer-aided system for the detection of arrhythmogenic sites. This work demonstrates for the first time the usefulness of supervised machine learning for the detection of arrhythmogenic sites in post-ischemic VT patients, thus enabling the development of computer-aided systems to reduce operator dependence and errors, thereby possibly improving clinical outcomes.
Collapse
Affiliation(s)
- Giulia Baldazzi
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy.
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy.
| | - Marco Orrù
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Graziana Viola
- Department of Cardiology, Santissima Annunziata Hospital, Sassari, Italy
| | - Danilo Pani
- Medical Devices and Signal Processing (MeDSP) Lab, Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Ravi V, Winterfield J, Liang J, Larsen T, Dye C, Sanders D, Skeete J, Payne J, Trohman RG, Aksu T, Sharma PS, Huang HD. Solving the Reach Problem: A Review of Present and Future Approaches for Addressing Ventricular Arrhythmias Arising from Deep Substrate. Arrhythm Electrophysiol Rev 2023; 12:e04. [PMID: 37600155 PMCID: PMC10433105 DOI: 10.15420/aer.2022.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 08/22/2023] Open
Abstract
Ventricular tachycardia (VT) is a significant cause of morbidity and mortality in patients with ischaemic and non-ischaemic cardiomyopathies. In most patients, the primary strategy of VT catheter ablation is based on the identification of critical components of reentry circuits and modification of abnormal substrate which can initiate reentry. Despite technological advancements in catheter design and improved ability to localise abnormal substrates, putative circuits and site of origins of ventricular arrhythmias (VAs), current technologies remain inadequate and durable success may be elusive when the critical substrate is deep or near to critical structures that are at risk of collateral damage. In this article, we review the available and potential future non-surgical investigational approaches for treatment of VAs and discuss the viability of these modalities.
Collapse
Affiliation(s)
- Venkatesh Ravi
- Saint Francis Heart and Vascular Institute, Tulsa, OK, US
| | - Jeffrey Winterfield
- Department of Cardiology, Medical University of South Carolina, Charleston, SC, US
| | - Jackson Liang
- Department of Cardiology, University of Michigan, Ann Arbor, MI, US
| | - Timothy Larsen
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - Cicely Dye
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - David Sanders
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - Jamario Skeete
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - Josh Payne
- Department of Cardiology, University of Michigan, Ann Arbor, MI, US
| | - Richard G Trohman
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Parikshit S Sharma
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| | - Henry D Huang
- Department of Cardiology, Rush University Medical Center, Chicago, IL, US
| |
Collapse
|
8
|
Winterfield J, Huang HD. Advancements in management of ventricular arrhythmias. J Interv Card Electrophysiol 2023; 66:1-3. [PMID: 36598716 DOI: 10.1007/s10840-022-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Jeffrey Winterfield
- Division of Cardiology, Section of Cardiac Electrophysiology, Medical University of South Carolina, Charleston, SC, USA
| | - Henry D Huang
- Division of Cardiology, Section of Cardiac Electrophysiology, Rush University Medical Center, 1717 W. Congress Parkway, Chicago, IL, 60657, USA.
| |
Collapse
|
9
|
Vázquez-Calvo S, Roca-Luque I, Porta-Sánchez A. Ventricular Tachycardia Ablation Guided by Functional Substrate Mapping: Practices and Outcomes. J Cardiovasc Dev Dis 2022; 9:jcdd9090288. [PMID: 36135433 PMCID: PMC9501404 DOI: 10.3390/jcdd9090288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Catheter ablation of ventricular tachycardia has demonstrated its important role in the treatment of ventricular tachycardia in patients with structural cardiomyopathy. Conventional mapping techniques used to define the critical isthmus, such as activation mapping and entrainment, are limited by the non-inducibility of the clinical tachycardia or its poor hemodynamic tolerance. To overcome these limitations, a voltage mapping strategy based on bipolar electrograms peak to peak analysis was developed, but a low specificity (30%) for VT isthmus has been described with this approach. Functional mapping strategy relies on the analysis of the characteristics of the electrograms but also their propagation patterns and their response to extra-stimulus or alternative pacing wavefronts to define the targets for ablation. With this review, we aim to summarize the different functional mapping strategies described to date to identify ventricular arrhythmic substrate in patients with structural heart disease.
Collapse
|