1
|
Navarro Ros FM, Maya Viejo JD. Preclinical Evaluation of Electronic Health Records (EHRs) to Predict Poor Control of Chronic Respiratory Diseases in Primary Care: A Novel Approach to Focus Our Efforts. J Clin Med 2024; 13:5609. [PMID: 39337095 PMCID: PMC11433338 DOI: 10.3390/jcm13185609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Managing chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) within the Spanish Sistema Nacional de Salud (SNS) presents significant challenges, particularly due to their high prevalence and poor disease control rates-approximately 45.1% for asthma and 63.2% for COPD. This study aims to develop a novel predictive model using electronic health records (EHRs) to estimate the likelihood of poor disease control in these patients, thereby enabling more efficient management in primary care settings. Methods: The Seleida project employed a bioinformatics approach to identify significant clinical variables from EHR data in primary care centers in Seville and Valencia. Statistically significant variables were incorporated into a logistic regression model to predict poor disease control in patients with asthma and COPD patients. Key variables included the number of short-acting β-agonist (SABA) and short-acting muscarinic antagonist (SAMA) canisters, prednisone courses, and antibiotic courses over the past year. Results: The developed model demonstrated high accuracy, sensitivity, and specificity in predicting poorly controlled disease in both asthma and COPD patients. These findings suggest that the model could serve as a valuable tool for the early identification of at-risk patients, allowing healthcare providers to prioritize and optimize resource allocation in primary care settings. Conclusions: Integrating this predictive model into primary care practice could enhance the proactive management of asthma and COPD, potentially improving patient outcomes and reducing the burden on healthcare systems. Further validation in diverse clinical settings is warranted to confirm the model's efficacy and generalizability.
Collapse
|
2
|
Ma M, Hao X, Zhao J, Luo S, Liu Y, Li D. Predicting heart failure in-hospital mortality by integrating longitudinal and category data in electronic health records. Med Biol Eng Comput 2023:10.1007/s11517-023-02816-z. [PMID: 36959414 DOI: 10.1007/s11517-023-02816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Heart failure is a life-threatening syndrome that is diagnosed in 3.6 million people worldwide each year. We propose a deep fusion learning model (DFL-IMP) that uses time series and category data from electronic health records to predict in-hospital mortality in patients with heart failure. We considered 41 time series features (platelets, white blood cells, urea nitrogen, etc.) and 17 category features (gender, insurance, marital status, etc.) as predictors, all of which were available within the time of the patient's last hospitalization, and a total of 7696 patients participated in the observational study. Our model was evaluated against different time windows. The best performance was achieved with an AUC of 0.914 when the observation window was 5 days and the prediction window was 30 days. Outperformed other baseline models including LR (0.708), RF (0.717), SVM (0.675), LSTM (0.757), GRU (0.759), GRU-U (0.766) and MTSSP (0.770). This tool allows us to predict the expected pathway of heart failure patients and intervene early in the treatment process, which has significant implications for improving the life expectancy of heart failure patients.
Collapse
Affiliation(s)
- Meikun Ma
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan, 030024, China
- Technology Research Center of Spatial Information Network Engineering of Shanxi, Taiyuan, 030024, China
| | - Xiaoyan Hao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jumin Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan, 030024, China
- Intelligent Perception Engineering Technology Center of Shanxi, Taiyuan, 030024, China
| | - Shijie Luo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yi Liu
- Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan, 030024, China
- Technology Research Center of Spatial Information Network Engineering of Shanxi, Taiyuan, 030024, China
- College of Data Science, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dengao Li
- Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan, 030024, China.
- Technology Research Center of Spatial Information Network Engineering of Shanxi, Taiyuan, 030024, China.
- College of Data Science, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Machine Learning in the Management of Lateral Skull Base Tumors: A Systematic Review. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2022. [DOI: 10.3390/ohbm3040007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of machine learning (ML) techniques to otolaryngology remains a topic of interest and prevalence in the literature, though no previous articles have summarized the current state of ML application to management and the diagnosis of lateral skull base (LSB) tumors. Subsequently, we present a systematic overview of previous applications of ML techniques to the management of LSB tumors. Independent searches were conducted on PubMed and Web of Science between August 2020 and February 2021 to identify the literature pertaining to the use of ML techniques in LSB tumor surgery written in the English language. All articles were assessed in regard to their application task, ML methodology, and their outcomes. A total of 32 articles were examined. The number of articles involving applications of ML techniques to LSB tumor surgeries has significantly increased since the first article relevant to this field was published in 1994. The most commonly employed ML category was tree-based algorithms. Most articles were included in the category of surgical management (13; 40.6%), followed by those in disease classification (8; 25%). Overall, the application of ML techniques to the management of LSB tumor has evolved rapidly over the past two decades, and the anticipated growth in the future could significantly augment the surgical outcomes and management of LSB tumors.
Collapse
|
4
|
Kumar PM, Hong CS, Afghah F, Manogaran G, Yu K, Hua Q, Gao J. Clouds Proportionate Medical Data Stream Analytics for Internet of Things-based Healthcare Systems. IEEE J Biomed Health Inform 2021; 26:973-982. [PMID: 34415841 DOI: 10.1109/jbhi.2021.3106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Internet of Things (IoT) assisted healthcare systems are designed for providing ubiquitous access and recommendations for personal and distributed electronic health services. The heterogeneous IoT platform assists healthcare services with reliable data management through dedicated computing devices. Healthcare services' reliability depends upon the efficient handling of heterogeneous data streams due to variations and errors. A Proportionate Data Analytics (PDA) for heterogeneous healthcare data stream processing is introduced in this manuscript. This analytics method differentiates the data streams based on variations and errors for satisfying the service responses. The classification is streamlined using linear regression for segregating errors from the variations in different time intervals. The time intervals are differentiated recurrently after detecting errors in the stream's variation. This process of differentiation and classification retains a high response ratio for healthcare services through spontaneous regressions. The proposed method's performance is analyzed using the metrics accuracy, identification ratio, delivery, variation factor, and processing time.
Collapse
|