1
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
2
|
Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, Lana H, Marcelo G, Di Giorgio C, Przybylski C, Hinou H, Ceña V, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules 2020; 21:5173-5188. [PMID: 33084317 DOI: 10.1021/acs.biomac.0c01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.
Collapse
Affiliation(s)
- Ana I Carbajo-Gordillo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, F-06108 Nice, France
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
4
|
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Sun Y, Guo F, Zuo T, Hua J, Diao G. Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll. Nat Commun 2016; 7:12042. [PMID: 27345928 PMCID: PMC4931247 DOI: 10.1038/ncomms12042] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/24/2016] [Indexed: 11/09/2022] Open
Abstract
The locations and arrangements of carotenoids at the subcellular level are responsible for their designated functions, which reinforces the necessity of developing methods for constructing carotenoid-based suprastructures beyond the molecular level. Because carotenoids lack the binding sites necessary for controlled interactions, functional structures based on carotenoids are not easily obtained. Here, we show that carotene-based suprastructures were formed via the induction of pillararene through a phase-transfer-mediated host-guest interaction. More importantly, similar to the main component in natural photosynthesis, complexes could be synthesized after chlorophyll was introduced into the carotene-based suprastructure assembly process. Remarkably, compared with molecular carotene or chlorophyll, this synthesized suprastructure exhibits some photocatalytic activity when exposed to light, which can be exploited for photocatalytic reaction studies of energy capture and solar conversion in living organisms.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, Jiangsu
225002, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, Jiangsu
225002, China
| | - Tongfei Zuo
- College of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, Jiangsu
225002, China
| | - Jingjing Hua
- College of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, Jiangsu
225002, China
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, Jiangsu
225002, China
| |
Collapse
|
6
|
|
7
|
Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerfaces 2014; 114:130-7. [DOI: 10.1016/j.colsurfb.2013.09.035] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/08/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
|
8
|
Namazi H, Heydari A. Synthesis ofβ-cyclodextrin-based dendrimer as a novel encapsulation agent. POLYM INT 2013. [DOI: 10.1002/pi.4637] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hassan Namazi
- Research Laboratory of Dendrimers and Biopolymers, Faculty of Chemistry; University of Tabriz; PO Box 51666 Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| | - Abolfazl Heydari
- Research Laboratory of Dendrimers and Biopolymers, Faculty of Chemistry; University of Tabriz; PO Box 51666 Tabriz Iran
| |
Collapse
|
9
|
García Fernández JM, Benito JM, Ortiz Mellet C. Cyclodextrin-scaffolded glycotransporters for gene delivery. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-10-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional drugs consist of a formulation of a bioactive species and a carrier, the former accounting for most of the sophistication of the design. In the case of biomolecular drugs, however, the role of the carrier becomes decisive in enabling the load to reach its target to carry out its designed therapeutic function. Thus, the clinical success of gene therapy, where the active principles are nucleic acids, critically depends on the use of efficient and safe delivery systems. Carbohydrates have proven particularly useful in this regard. Glycocoating, similarly to poly(ethylene)glycol (PEG)-coating (pegylation), can stabilize colloidal aggregates by improving solvation and preventing nonspecific interactions, for example, with serum proteins. Moreover, glycoconjugates can drive specific recognition and receptor-mediated internalization in target cells. Actually, the inherent flexibility of carbohydrate and glycoconjugate chemistry has greatly contributed to enlarging the range of functional materials that can be rationally conceived for gene delivery. Herein, this is illustrated with selected examples that focus on controlling the architectural parameters of the vectors to make them suitable for structure–activity relationship (SAR) and optimization studies. The members of the cyclomaltooligosaccharide (cyclodextrin, CD) family will be the central actors of the story.
Collapse
|
10
|
Martínez Á, Ortiz Mellet C, García Fernández JM. Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions. Chem Soc Rev 2013; 42:4746-73. [PMID: 23340678 DOI: 10.1039/c2cs35424a] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Covalent attachment of biorecognizable sugar ligands in several copies at precise positions of cyclomaltooligosaccharide (cyclodextrin, CD) macrocycles has proven to be an extremely flexible strategy to build multivalent conjugates. The commercial availability of the native CDs in three different sizes, their axial symmetry and the possibility of position- and face-selective functionalization allow a strict control of the valency and spatial orientation of the recognition motifs (glycotopes) in low, medium, high and hyperbranched glycoclusters, including glycodendrimer-CD hybrids. "Click-type" ligation chemistries, including copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC), thiol-ene coupling or thiourea-forming reactions, have been implemented to warrant full homogeneity of the adducts. The incorporation of different glycotopes to investigate multivalent interactions in heterogeneous environments has also been accomplished. Not surprisingly, multivalent CD conjugates have been, and continue to be, major actors in studies directed at deciphering the structural features ruling carbohydrate recognition events. Nanometric glycoassemblies endowed with the capability of adapting the inter-saccharide distances and orientations in the presence of a receptor partner or capable of mimicking the fluidity of biological membranes have been conceived by multitopic inclusion complex formation, rotaxanation or self-assembling. Applications in the fields of sensors, site-specific drug and gene delivery or protein stabilization attest for the maturity of the field.
Collapse
Affiliation(s)
- Álvaro Martínez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González 1, E-41012 Sevilla, Spain
| | | | | |
Collapse
|
11
|
Deng L, Wang X, Uppalapati S, Norberg O, Dong H, Joliton A, Yan M, Ramström O. Stereocontrolled 1- S-glycosylation and comparative binding studies of photoprobe-thiosaccharide conjugates with their O-linked analogs. PURE APPL CHEM 2013; 85:1789-1801. [PMID: 26180266 PMCID: PMC4500165 DOI: 10.1351/pac-con-12-08-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of thioglycosides and other glycan derivatives with anomeric sulfur linkages is gaining increasing interest, both in synthesis and in various biological contexts. Herein, we demonstrate the occurrence and circumvention of anomerization during 1-S-glycosylation reactions, and present highly efficient and stereocontrolled syntheses of a series of photoprobe-thiosaccharide conjugates. Mutarotation of glycosyl thiols proved to be the origin of the anomeric mixtures formed, and kinetic effects could be used to circumvent anomerization. The synthesized carbohydrate conjugates were then evaluated by both solution- and solid-phase-based techniques. Both binding results showed that the S-linked glyco-sides interact with their cognate lectins comparably to the corresponding O-analogs in the present cases, thus demonstrating the reliability of the solid-support platform built upon our photo-initiated carbohydrate immobilization method for probing protein bindings, and showing the potential of combining these two means for studying carbohydrate-protein interactions.
Collapse
Affiliation(s)
- Lingquan Deng
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Xin Wang
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Suji Uppalapati
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Oscar Norberg
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Hai Dong
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Rd. 1037, Wuhan, China
| | - Adrien Joliton
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| | - Mingdi Yan
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Olof Ramström
- Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
| |
Collapse
|
12
|
Montesarchio D, Coppola C, Boccalon M, Tecilla P. Carbohydrate-based synthetic ion transporters. Carbohydr Res 2012; 356:62-74. [DOI: 10.1016/j.carres.2012.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 11/27/2022]
|
13
|
Lindhorst TK, Kubik S. Supramolecular Approaches to the Study of Glycobiology. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
de Oliveira VE, Almeida EWC, Castro HV, Edwards HGM, Dos Santos HF, de Oliveira LFC. Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J Phys Chem A 2011; 115:8511-9. [PMID: 21728366 DOI: 10.1021/jp2028142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the inclusion processes of β-carotene, astaxanthin, lycopene, and norbixin (NOR) into the β-cyclodextrin (β-CD) cavity were investigated by means of Raman spectroscopy and quantum mechanics calculations. The Raman ν(1) band assigned to C═C stretching was sensitive to the host-guest interaction and in general undergoes a blue shift (3-13 cm(-1)) after inclusion takes place, which is the consequence of the localization of single and double bonds. This is supported by the molecular modeling prediction, which inclusion complexes show the ν(1) band blue shifted by 1-8 cm(-1). The calculated complexation energies was small for most of derivatives and was found to be -11.1 kcal mol(-1) for inclusion of AST and +0.27 kcal mol(-1) for NOR. The stability order was qualitatively correlated to topological parameters accounting for the opening angle of the chain. This means that after inclusion the guest molecules assume a slightly more extended conformation, which enhances the host-guest contact, improving the interaction energy. The results discussed here clearly demonstrate the matrix effect on the carotenes' spectroscopic profile and should contribute to fully characterize the raw samples.
Collapse
Affiliation(s)
- Vanessa E de Oliveira
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Starch and cellulose are the most abundant and important representatives of renewable biomass. Since the mid-19th century their properties have been changed by chemical modification for commercial and scientific purposes, and there substituted polymers have found a wide range of applications. However, the inherent polydispersity and supramolecular organization of starch and cellulose cause the products resulting from their modification to display high complexity. Chemical composition analysis of these mixtures is therefore a challenging task. Detailed knowledge on substitution patterns is fundamental for understanding structure-property relationships in modified cellulose and starch, and thus also for the improvement of reproducibility and rational design of properties. Substitution patterns resulting from kinetically or thermodynamically controlled reactions show certain preferences for the three available hydroxyl functions in (1→4)-linked glucans. Spurlin, seventy years ago, was the first to describe this in an idealized model, and nowadays this model has been extended and related to the next hierarchical levels, namely, the substituent distribution in and over the polymer chains. This structural complexity, with its implications for data interpretation, and the analytical approaches developed for its investigation are outlined in this article. Strategies and methods for the determination of the average degree of substitution (DS), monomer composition, and substitution patterns at the polymer level are presented and discussed with respect to their limitations and interpretability. Nuclear magnetic resonance spectroscopy, chromatography, capillary electrophoresis, and modern mass spectrometry (MS), including tandem MS, are the main instrumental techniques employed, in combination with appropriate sample preparation by chemical and enzymatic methods.
Collapse
|
16
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
17
|
Jiménez Blanco JL, Ortega-Caballero F, Ortiz Mellet C, García Fernández JM. (Pseudo)amide-linked oligosaccharide mimetics: molecular recognition and supramolecular properties. Beilstein J Org Chem 2010; 6:20. [PMID: 20485602 PMCID: PMC2870983 DOI: 10.3762/bjoc.6.20] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/11/2010] [Indexed: 01/04/2023] Open
Abstract
Oligosaccharides are currently recognised as having functions that influence the entire spectrum of cell activities. However, a distinct disadvantage of naturally occurring oligosaccharides is their metabolic instability in biological systems. Therefore, much effort has been spent in the past two decades on the development of feasible routes to carbohydrate mimetics which can compete with their O-glycosidic counterparts in cell surface adhesion, inhibit carbohydrate processing enzymes, and interfere in the biosynthesis of specific cell surface carbohydrates. Such oligosaccharide mimetics are potential therapeutic agents against HIV and other infections, against cancer, diabetes and other metabolic diseases. An efficient strategy to access this type of compounds is the replacement of the glycosidic linkage by amide or pseudoamide functions such as thiourea, urea and guanidine. In this review we summarise the advances over the last decade in the synthesis of oligosaccharide mimetics that possess amide and pseudoamide linkages, as well as studies focussing on their supramolecular and recognition properties.
Collapse
Affiliation(s)
- José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Prof. García González 1, Seville 41012, Spain.
| | | | | | | |
Collapse
|
18
|
Abstract
Easy, quantitative, and one-pot introduction of eight β-lactoside-modules onto a porphyrin-core was achieved through Cu+-catalyzed chemoselective coupling (click chemistry) between a porphyrin carrying eight alkyne-terminals and β-lactosyl azides. The obtained porphyrin-based glycocluster shows not only good water-solubility but also strong/specific lectin-affinity.
Collapse
|
19
|
Méndez-Ardoy A, Gómez-García M, Ortiz Mellet C, Sevillano N, Girón MD, Salto R, Santoyo-González F, García Fernández JM. Preorganized macromolecular gene delivery systems: amphiphilic beta-cyclodextrin "click clusters". Org Biomol Chem 2009; 7:2681-4. [PMID: 19532982 DOI: 10.1039/b903635k] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene delivery systems based on the beta-cyclodextrin scaffold have been synthesized by combining the copper(I)-catalyzed azide-alkyne coupling ("click chemistry") and an efficient acylation method of the secondary hydroxyls; molecular flexibility, charge density and hydrophobic-hydrophilic balance are critical parameters that can be fine-tuned by the click approach.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Perez-Balderas F, Morales-Sanfrutos J, Hernandez-Mateo F, Isac-García J, Santoyo-Gonzalez F. Click Multivalent Homogeneous Neoglycoconjugates - Synthesis and Evaluation of Their Binding Affinities. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Ortega-Muñoz M, Perez-Balderas F, Morales-Sanfrutos J, Hernandez-Mateo F, Isac-García J, Santoyo-Gonzalez F. Click Multivalent Heterogeneous Neoglycoconjugates - Modular Synthesis and Evaluation of Their Binding Affinities. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Rodríguez-Lucena D, Ortiz Mellet C, Jaime C, Burusco KK, García Fernández JM, Benito JM. Size-Tunable Trehalose-Based Nanocavities: Synthesis, Structure, and Inclusion Properties of Large-Ring Cyclotrehalans. J Org Chem 2009; 74:2997-3008. [DOI: 10.1021/jo802796p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Rodríguez-Lucena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Carlos Jaime
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Kepa K. Burusco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - José M. García Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Juan M. Benito
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain, Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain, and Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|
23
|
Ortega-Caballero F, Mellet CO, Le Gourriérec L, Guilloteau N, Di Giorgio C, Vierling P, Defaye J, García Fernández JM. Tailoring β-Cyclodextrin for DNA Complexation and Delivery by Homogeneous Functionalization at the Secondary Face. Org Lett 2008; 10:5143-6. [DOI: 10.1021/ol802081z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fernando Ortega-Caballero
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Loïc Le Gourriérec
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Nicolas Guilloteau
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Christophe Di Giorgio
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Pierre Vierling
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - Jacques Defaye
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| | - José M. García Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain, LCMBA UMR 6001 CNRS - Université de Nice Sophia Antipolis, 28, avenue de Valrose, F-06100 Nice, France, Départment de Pharmacochimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, (CNRS - Univ. de Grenoble, UMR 5063, FR 2607), Bât. E André Rassat, BP 53, F-38041 Grenoble, France, and Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, E-41092
| |
Collapse
|
24
|
Rodríguez-Lucena D, Benito JM, Álvarez E, Jaime C, Perez-Miron J, Ortiz Mellet C, García Fernández JM. Synthesis, Structure, and Inclusion Capabilities of Trehalose-Based Cyclodextrin Analogues (Cyclotrehalans). J Org Chem 2008; 73:2967-79. [DOI: 10.1021/jo800048s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David Rodríguez-Lucena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Juan M. Benito
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Eleuterio Álvarez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Carlos Jaime
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Javier Perez-Miron
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - José M. García Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain, Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain, and Departamento de Química, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
25
|
Díaz-Moscoso A, Balbuena P, Gómez-García M, Ortiz Mellet C, Benito JM, Le Gourriérec L, Di Giorgio C, Vierling P, Mazzaglia A, Micali N, Defaye J, García Fernández JM. Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. Chem Commun (Camb) 2008:2001-3. [DOI: 10.1039/b718672j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Martina K, Trotta F, Robaldo B, Belliardi N, Jicsinszky L, Cravotto G. Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.10.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
|
28
|
|
29
|
Balbuena P, Lesur D, González Alvarez MJ, Mendicuti F, Mellet CO, García Fernández JM. One-pot regioselective synthesis of 2I,3I-O-(o-xylylene)-capped cyclomaltooligosaccharides: tailoring the topology and supramolecular properties of cyclodextrins. Chem Commun (Camb) 2007:3270-2. [PMID: 17668097 DOI: 10.1039/b705644c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The alpha,alpha'-dibromo-o-xylylene cap has been installed at the secondary hydroxyls of a single glucopyranosyl residue in cyclodextrins in one pot and with total regioselectivity; the resulting cyclic ether acts as a removable hinge, allowing selective elaboration of the secondary face and modulating both the self-association and the inclusion capabilities of the hosts.
Collapse
Affiliation(s)
- Patricia Balbuena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, Sevilla, E-41071, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Defaye J, García Fernández JM, Ortiz Mellet C. Les cyclodextrines en pharmacie : perspectives pour le ciblage d’actifs thérapeutiques et le contrôle d’interactions membranaires. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:33-49. [PMID: 17299350 DOI: 10.1016/s0003-4509(07)90015-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclomaltooligosaccharides (cyclodextrins, CDs) comprise a family of biocompatible cage devices which have been developed during the last thirty years in order to improve the solubility, stability and the bioavailability of drugs. Chemical modification usually improves the solubility and solubilisation properties and generally alleviates the renal toxicity of native cyclodextrins. Red cell lysis, which is ascribed to membrane interactions is also monitored. Selective and commercially accessible functionalisation processes are now available which avoid the problems of heterogeneity commonly found with the existing industrial approaches. These allow a convenient access to modular structures which could fit the molecular characteristics of the host ("bouquet" and dimeric CDs). Grafting of saccharide ligands which are recognised by membrane proteins is another promising aspect for the transport and targeting of drugs and the control of cell interactions. Several topological aspects of ligand presentation toward a membrane lectin have been assessed with concanavalin A and mannosyl CD-dendrimers and the results have been extended to molecular targeting to macrophages. Advantage has been taken of the autoassociation properties of amphiphilic derivatives of cyclodextrins for the preparation of stable nanoparticles of interest for the transport and targeting of drugs and macromolecular systems.
Collapse
Affiliation(s)
- J Defaye
- Département de Pharmacochimie Moléculaire, Cnrs et Université Joseph Fourier-Grenoble 1 (UMR 5063, FR 2607 ICMG), Chimie E, 301, avenue de la Chimie, Domaine universitaire, BP 53 F 38041 Grenoble Cedex 9, France.
| | | | | |
Collapse
|