1
|
Ye G, Chen C, Lin J, Peng X, Kumar A, Liu D, Liu J. Alkali /alkaline earth-based metal-organic frameworks for biomedical applications. Dalton Trans 2021; 50:17438-17454. [PMID: 34766180 DOI: 10.1039/d1dt02814f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the steady development of metal-organic framework (MOF) materials, this peculiar class of three-dimensional materials has found application prospects in a myriad of areas. The integration of different metals with various categories of ligands engendered a full gamut of frameworks, which of course are supplemented by diversified modification methods. Amongst many metal centers utilized to design and synthesize targeted MOFs, alkali/alkaline earth metal-based MOFs are gaining significant attention because these metal centers can be regarded as human endogenous metals. Numerous studies have shown that alkali/alkaline earth metal MOFs (A/A-E MOFs) tend to have better properties than other metals. This is because A/A-E MOFs offer better biocompatibility, so it is expected to be used in a broader field of biomedicine in the near future. This review mainly introduces the application of A/A-E MOF materials in drug delivery, sensing, and some materials with unique biomedical applications, and elaborates the challenges, obstacles and development of some A/A-E MOF materials in the biomedical field.
Collapse
Affiliation(s)
- Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Chen Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Jingzhe Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India.
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd, Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
2
|
Zagami R, Rapozzi V, Piperno A, Scala A, Triolo C, Trapani M, Xodo LE, Monsù Scolaro L, Mazzaglia A. Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. Biomacromolecules 2019; 20:2530-2544. [PMID: 31241900 DOI: 10.1021/acs.biomac.9b00306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FR-α. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(-)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Valentina Rapozzi
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Claudia Triolo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra , Università di Messina , Viale F. Stagno d'Alcontres, 31 , 98166 Messina , Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Luigi E Xodo
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| |
Collapse
|
3
|
Ceborska M. Folate appended cyclodextrins for drug, DNA, and siRNA delivery. Eur J Pharm Biopharm 2017; 120:133-145. [DOI: 10.1016/j.ejpb.2017.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
4
|
Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G. Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 2016. [DOI: 10.1039/c5ra22398a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin-based drug nanocarriers look very promising for improving the cytotoxicity of LA-12.
Collapse
Affiliation(s)
- Valentina Giglio
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | - Maurizio Viale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Massimiliano Monticone
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
- U.O.C. Bioterapie
- Genova
- Italy
| | - Angela M. Aura
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | | | - Graziella Vecchio
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
5
|
Yin JJ, Zhou ZW, Zhou SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv Transl Res 2015; 3:364-74. [PMID: 25788282 DOI: 10.1007/s13346-013-0140-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The efficacy and applicability of anticancer drugs are greatly restricted by severe systemic toxicities and drug resistance. Targeting drug delivery strategies have been developed to prevent the shortcomings of chemotherapy. Among various approaches to specifically target drug-loaded carrier systems to the required pathological sites, ligand-attached cyclodextrin-based targeting complexes are a promising drug delivery system, which is achieved mainly through specific molecular interactions between the drugs and cell surface receptors. The principal targeting tactics include conjugation of cyclodextrin with targeting moieties or encapsulation drugs in cyclodextrins. The cyclodextrin-based supramolecules, polymers, or nanoparticles bearing bioactive substances such as folate, estrogens, carbohydrates, peptides, etc. have been reviewed.
Collapse
Affiliation(s)
- Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
7
|
Perret F, Marminon C, Zeinyeh W, Nebois P, Bollacke A, Jose J, Parrot-Lopez H, Le Borgne M. Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. Int J Pharm 2013; 441:491-8. [DOI: 10.1016/j.ijpharm.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/31/2012] [Accepted: 11/03/2012] [Indexed: 12/21/2022]
|
9
|
Thiele C, Auerbach D, Jung G, Qiong L, Schneider M, Wenz G. Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym Chem 2011. [DOI: 10.1039/c0py00241k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|