1
|
Ghanem MI, Ashmawy SM, El Maghraby GM. Intestinal Absorption Site-Guided Development and Evaluation of Oral Disintegrating Controlled Release Tablets of Mirabegron. AAPS PharmSciTech 2024; 25:167. [PMID: 39043962 DOI: 10.1208/s12249-024-02865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
The aim was to employ site-dependent absorption of mirabegron (MB) as a guide for fabrication of oral disintegrating controlled release tablet (ODCRT) which undergoes instantaneous release of loading fraction followed by delayed release of the rest of MB. The goal was to release MB in a manner consistent with the chronobiology of overactive bladder (OAB) syndrome. In situ rabbit intestinal permeability of MB was adopted to assess absorption sites. MB was subjected to dry co-grinding with citric acid to develop the fast-dissolving fraction in the mouth. Delayed release fraction was formulated by ethanol-assisted co-processing with increasing proportions of Eudragit polymer (S100) as pH responsive polymer. The developed dry mixtures underwent thermal (DSC) and physical (X-ray diffraction) characterization, in addition to in vitro release behavior. Optimized fast dissolving and delayed release formulations were mixed with tablet excipient before compression in ODCRT which was assessed for release profile using continuous pH variation. MB underwent preferential permeation through ileum and colon. Co-grinding with citric acid provided co-amorphous powder with fast dissolution. Co-amorphization of MB with Eudragit S100 (1:5) showed pH-dependent release to release most of the dose at pH 7.4. The developed ODCRT released 43.5% of MB in the buccal environment and retained MB at acidic pH to start release at pH 7.4. The study successfully fabricated ODCRT guided by site-dependent absorption. The ODCRT instantaneously released loading fraction to support the patient after administration with delayed fraction to sustain the effect.
Collapse
Affiliation(s)
- Mohammed I Ghanem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shimaa M Ashmawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Shen H, Pan L, Ning K, Fang Y, Muhitdinov B, Liu E, Huang Y. Asiatic acid cyclodextrin inclusion micro-cocrystal for insoluble drug delivery and acute lung injury therapy enhancement. J Nanobiotechnology 2024; 22:119. [PMID: 38494523 PMCID: PMC10946140 DOI: 10.1186/s12951-024-02387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 μm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.
Collapse
Affiliation(s)
- Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China
| | - Keke Ning
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bahtiyor Muhitdinov
- Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, 83 M. Ulughbek Street, Tashkent, 100125, Uzbekistan
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
| |
Collapse
|
3
|
Arroyo-García CM, Quinteros D, Palma SD, Jiménez de los Santos CJ, Moyano JR, Rabasco AM, González-Rodríguez ML. Synergistic Effect of Acetazolamide-(2-hydroxy)propyl β-Cyclodextrin in Timolol Liposomes for Decreasing and Prolonging Intraocular Pressure Levels. Pharmaceutics 2021; 13:2010. [PMID: 34959292 PMCID: PMC8709067 DOI: 10.3390/pharmaceutics13122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to design, for the first time, a co-loaded liposomal formulation (CLL) for treatment of glaucoma including timolol maleate (TM) in the lipid bilayer and acetazolamide (Acz)-(2-hydroxy)propyl β-cyclodextrin (HPβCD) complexes (AczHP) solubilized in the aqueous core of liposomes. Formulations with TM (TM-L) and AczHP (AczHP-L), separately, were also prepared and characterized. A preliminary study comprising the Acz/HPβCD complexes and their interaction with cholesterol (a component of the lipid bilayer) was realized. Then, a screening study on formulation factors affecting the quality of the product was carried out following the design of the experiment methodology. In addition, in vitro release and permeation studies and in vivo lowering intraocular pressure (IOP) studies were performed. The results of the inclusion complexation behavior, characterization, and binding ability of Acz with HPβCD showed that HPβCD could enhance the water solubility of Acz despite the weak binding ability of the complex. Ch disturbed the stability and solubility parameters of Acz due to the fact of its competence by CD; thus, Chems (steroid derivative) was selected for further liposome formulation studies. The optimization of the lipid bilayer composition (DDAB, 0.0173 mmol and no double loading) and the extrusion as methods to reduce vesicle size were crucial for improving the physico-chemical properties and encapsulation efficiency of both drugs. In vitro release and permeation studies demonstrated that the CLL formulation showed improvement in in vitro drug release and permeation compared to the liposomal formulations with a single drug (TM-L and AczHP-L) and the standard solutions (TM-S and AczHP-S). CLL showed high efficacy in reducing and prolonging IOP, suggesting that the synergistic effect of TM and Acz on aqueous humor retention and the presence of this cyclodextrin and liposomes as permeation enhancers are responsible for the success of this strategy of co-loading for glaucoma therapy.
Collapse
Affiliation(s)
- Carmen M. Arroyo-García
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (D.Q.); (S.D.P.)
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago D. Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (D.Q.); (S.D.P.)
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Cesáreo J. Jiménez de los Santos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - José R. Moyano
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| |
Collapse
|
4
|
Jang EH, Park YS, Choi DH. Investigation of the effects of materials and dry granulation process on the mirabegron tablet by integrated QbD approach with multivariate analysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|