1
|
Lin F, Mao Y, Zhao F, Idris AL, Liu Q, Zou S, Guan X, Huang T. Towards Sustainable Green Adjuvants for Microbial Pesticides: Recent Progress, Upcoming Challenges, and Future Perspectives. Microorganisms 2023; 11:microorganisms11020364. [PMID: 36838328 PMCID: PMC9965284 DOI: 10.3390/microorganisms11020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Microbial pesticides can be significantly improved by adjuvants. At present, microbial pesticide formulations are mainly wettable powders and suspension concentrations, which are usually produced with adjuvants such as surfactants, carriers, protective agents, and nutritional adjuvants. Surfactants can improve the tension between liquid pesticides and crop surfaces, resulting in stronger permeability and wettability of the formulations. Carriers are inert components of loaded or diluted pesticides, which can control the release of active components at appropriate times. Protective agents are able to help microorganisms to resist in adverse environments. Nutritional adjuvants are used to provide nutrients for microorganisms in microbial pesticides. Most of the adjuvants used in microbial pesticides still refer to those of chemical pesticides. However, some adjuvants may have harmful effects on non-target organisms and ecological environments. Herein, in order to promote research and improvement of microbial pesticides, the types of microbial pesticide formulations were briefly reviewed, and research progress of adjuvants and their applications in microbial pesticides were highlighted, the challenges and the future perspectives towards sustainable green adjuvants of microbial pesticides were also discussed in this review.
Collapse
|
2
|
Martwong E, Sukhawipat N, Junthip J. Adsorption of Cationic Pollutants from Water by Cotton Rope Coated with Cyclodextrin Polymers. Polymers (Basel) 2022; 14:polym14122312. [PMID: 35745888 PMCID: PMC9228999 DOI: 10.3390/polym14122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination from perilous organic compounds (pesticide and dyes) in water generates a significant problem for the environment and humans. A modified textile was prepared by a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and β-cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord for cationic pollutant removal from an aqueous solution. Its physicochemical properties were also characterized by gravimetry, titration, stereomicroscopy, SEM, TGA, 13C NMR, and ATR-FTIR. The CC2 system exhibited 79.2% coating yield, 1.12 mmol/g COOH groups, 91.3% paraquat (PQ) removal, 97.0% methylene blue (MB) removal, and 98.3% crystal violet (CV) removal for 25 mg/L of initial concentration. The kinetics was fitted to the pseudo-second-order model using 6 h of contact time. The isotherm was suitable for the Langmuir isotherm with a maximum adsorption of 26.9 mg/g (PQ), 23.7 mg/g (MB), and 30.3 mg/g (CV). After 120 h of contact time in water and 5% v/v of HCI in ethanol, the weight loss was 7.5% and 5.6%, respectively. Finally, the recyclability performance reached 84.8% (PQ), 95.2% (MB), and 96.9% (CV) after five reuses.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Nathapong Sukhawipat
- Division of Polymer Engineering Technology, Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-(0)4-400-9009 (ext. 1110)
| |
Collapse
|
3
|
Cotton Cord Coated with Cyclodextrin Polymers for Paraquat Removal from Water. Polymers (Basel) 2022; 14:polym14112199. [PMID: 35683872 PMCID: PMC9182761 DOI: 10.3390/polym14112199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination of hazardous agrochemical substances in water caused essential trouble for humans and the environment. The functional textile was used as an effective adsorbent for paraquat removal from an aqueous solution. The coating of anionic cyclodextrin polymer, issued from the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β−cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord, was firstly investigated. Their physicochemical characteristics were also characterized by gravimetry, acid–base titration, ATR-FTIR, 13C NMR, TGA, and stereo-microscopy. The BDP5 system revealed 107.3% coating yield, 1.13 mmol/g COOH groups, and 95.1% paraquat removal for 25 mg/L of initial concentration. The pseudo-second-order model was appropriate for kinetics using 6 h of contact time. Langmuir isotherm was suitable with the maximum adsorption of 30.3 mg/g for paraquat adsorption. The weight loss was 10.7% and 7.8%, respectively, for water and 5% v/v of HCI in ethanol after 120 h of contact time. Finally, the reusability efficiency stayed at 88.9% after five regeneration.
Collapse
|
4
|
Karimian A, Norouzi M, Nasri Fargi Z. Application of sulfuric acid modified nano kaolin as a heterogeneous catalyst for the efficient synthesis of quinoxalines and benzothiazines. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Azam Karimian
- Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran
| | - Mahdi Norouzi
- Chemistry and Chemical Engineering, Maleke Ashtar University of Technology, Tehran, Iran
| | - Zahra Nasri Fargi
- Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran
| |
Collapse
|
5
|
Martwong E, Chuetor S, Junthip J. Adsorption of Cationic Contaminants by Cyclodextrin Nanosponges Cross-Linked with 1,2,3,4-Butanetetracarboxylic Acid and Poly(vinyl alcohol). Polymers (Basel) 2022; 14:342. [PMID: 35054747 PMCID: PMC8778113 DOI: 10.3390/polym14020342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Cationic organic pollutants (dyes and pesticides) are mainly hydrosoluble and easily contaminate water and create a serious problem for biotic and abiotic species. The elimination of these dangerous contaminants from water was accomplished by adsorption using cyclodextrin nanosponges. These nanosponges were elaborated by the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β-cyclodextrin in the presence of poly(vinyl alcohol). Their physicochemical characteristics were characterized by gravimetry, acid-base titration, TGA, 13C NMR, ATR-FTIR, Raman, X-ray diffraction, and Stereomicroscopy. The BP5 nanosponges displayed 68.4% yield, 3.31 mmol/g COOH groups, 0.16 mmol/g β-CD content, 54.2% swelling, 97.0% PQ removal, 96.7% SO removal, and 98.3% MG removal for 25 mg/L of initial concentration. The pseudo-second-order model was suitable for kinetics using 180 min of contact time. Langmuir isotherm was suitable for isotherm with the maximum adsorption of 120.5, 92.6, and 64.9 mg/g for paraquat (PQ), safranin (SO), and malachite green (MG) adsorption, respectively. Finally, the reusability performance after five regeneration times reached 94.1%, 91.6%, and 94.6% for PQ, SO, and MG adsorption, respectively.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Martwong E, Chuetor S, Junthip J. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges. Polymers (Basel) 2021; 13:4110. [PMID: 34883612 PMCID: PMC8658895 DOI: 10.3390/polym13234110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The contamination of hydrosoluble pesticides in water could generate a serious problem for biotic and abiotic components. The removal of a hazardous agrochemical (paraquat) from water was achieved by adsorption processes using poly(vinyl alcohol)-cyclodextrin nanosponges, which were prepared with various formulations via the crosslinking between citric acid and β-cyclodextrin in the presence of poly(vinyl alcohol). The physicochemical properties of nanosponges were also characterized by different techniques, such as gravimetry, thermogravimetry, microscopy (SEM and Stereo), spectroscopy (UV-visible, NMR, ATR-FTIR, and Raman), acid-base titration, BET surface area analysis, X-ray diffraction, and ion exchange capacity. The C10D-P2 nanosponges displayed 60.2% yield, 3.14 mmol/g COOH groups, 0.335 mmol/g β-CD content, 96.4% swelling, 94.5% paraquat removal, 0.1766 m2 g-1 specific surface area, and 5.2 × 10-4 cm3 g-1 pore volume. The presence of particular peaks referring to specific functional groups on spectroscopic spectra confirmed the successful polycondensation on the reticulated nanosponges. The pseudo second-order model (with R2 = 0.9998) and Langmuir isotherm (with R2 = 0.9979) was suitable for kinetics and isotherm using 180 min of contact time and a pH of 6.5. The maximum adsorption capacity was calculated at 112.2 mg/g. Finally, the recyclability of these nanosponges was 90.3% of paraquat removal after five regeneration times.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
7
|
Vigneshwaran S, Sirajudheen P, Karthikeyan P, Nikitha M, Ramkumar K, Meenakshi S. Immobilization of MIL-88(Fe) anchored TiO 2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124728. [PMID: 33310324 DOI: 10.1016/j.jhazmat.2020.124728] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 05/20/2023]
Abstract
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.
Collapse
Affiliation(s)
- Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, 676306, Malappuram, Kerala, India.
| | - Perumal Karthikeyan
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Manuvelraja Nikitha
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Krishnapillai Ramkumar
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| |
Collapse
|