1
|
Meruvia-Rojas YV, Molina-Montes E, Hernández-Laguna A, Sainz-Díaz CI. Intercalation of the anticancer drug lenalidomide into montmorillonite for bioavailability improvement: a computational study. J Mol Model 2024; 31:5. [PMID: 39630314 PMCID: PMC11618151 DOI: 10.1007/s00894-024-06210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024]
Abstract
CONTEXT Lenalidomide (LEN) is used for the treatment of myeloma blood cancer disease. It has become one of the most efficient drugs to halt this disease. LEN is a low-soluble drug in aqueous media. The search of a pharmaceutical preparation to improve the bioavailability and, therefore, to optimize its efficiency is an important issue for pharmaceutical industries and health care. The use of natural excipients such as montmorillonite (MNT) can provide changes in the physical-chemical properties for improving the bioavailability of this drug. We present the first computational study at the atomic scale of the periodic crystal forms of the polymorphs for this anticancer drug, highly demanded in the pharmacy market. In addition, we propose a pharmaceutical preparation by intercalation of LEN in natural MNT. So, our calculations predict that LEN can be intercalated in the interlayer space of MNT, and be released in aqueous media, and physiological aqueous media in consequence. This release process is a more exothermic reaction than the unpacking energy of any of its polymorphs. Besides, the infrared spectra of the LEN molecule and its crystal polymorphs, and LEN intercalated in the confined space of MNT, have been calculated at different levels of theory. The band frequencies have been assigned, matching with the experimental bands, predicting the use of this technique for experimental studies. METHOD In this work, the method is aimed to explore this research at the atomic and molecular level by using computational modelling methods including INTERFACE FF and other FF along with quantum mechanical calculations (Dmol3 and CASTEP) of 3-D periodical systems applying periodical boundary conditions. Models of the isolated molecule and two polymorphs of the crystal structures, with the model of bulk water and LEN intercalated in the MNT model, have been considered. An analysis of the intermolecular interactions is accomplished.
Collapse
Affiliation(s)
- Yumeida V Meruvia-Rojas
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain
- Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Esther Molina-Montes
- Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Alfonso Hernández-Laguna
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain.
| |
Collapse
|
2
|
de Brito França D, da Costa DP, da Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta Cuevas M, Jaber M, Fonseca MG. Organo magadiites for diclofenac adsorption: influence of the surfactant chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54695-54712. [PMID: 39210226 DOI: 10.1007/s11356-024-34754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The presence of drugs in aquatic environments has been considered a global challenge and several remediation technologies have been proposed, including adsorption. In this study, new diclofenac adsorbents were obtained from the reaction of sodium magadiite (Na-Mag) with surfactants dodecylpyridinium chloride hydrate (C12pyCl) and hexadecylpyridinium chloride monohydrate (C16pyCl)), 1-hexadecyltrimethylammonium bromide (C16Br), and dodecyltrimethylammonium bromide (C12Br). The synthesis was carried out in the microwave at 50 °C for 5 min using surfactant amounts of 100% and 200% in relation to the cation exchange capacity of Na-Mag. The elemental analysis indicated that surfactants with a longer organic chain were more incorporated into Na-Mag, whose values were 1.42 and 1.32 mmol g-1 for C16pyMag200% and C16Mag200%, respectively. X-ray diffraction results suggested formation of intercalated products with basal space in the range of 2.81-4.00 nm. Diclofenac was quickly adsorbed on all organophilic magadiites, at an equilibrium time of 1 min. Drug capacity adsorption was influenced by the arrangement and packing density of organic cations, the basal distance, and the organic contents of the samples at high drug concentrations. Alkylpyridinium magadiites exhibited maximum adsorption capacities higher than alkylammonium magadiites, of 96.4, 100.7, 131.7, and 166.1 mg g-1 for C12pyMag100%, C12pyMag200%, C16pyMag100%, and C16pyMag200%, respectively, at pH 6.0 and 30 °C. Diclofenac removal by samples was not affected by the presence of ibuprofen, which was also removed from binary system by organophilic magadiites reaching removal of 76.5% and 86.9% by C16pyMag100% and C16pyMag200%, respectively. Regeneration studies demonstrated a drug removal percentage of 83-92% for C16pyMag and C16Mag after three cycles of adsorption.
Collapse
Affiliation(s)
- Denise de Brito França
- Fuel and Materials Laboratory - NPE-LACOM, UFPB, João Pessoa-PB, 58051-085, Brazil
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina- PI, 64049-550, Brazil
| | | | | | - Josy Anteveli Osajima
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina- PI, 64049-550, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS), 41012, Seville, Spain
| | - Maria Del Mar Orta Cuevas
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012, Seville, Spain
| | - Maguy Jaber
- Sorbonne Université, LAMS, CNRS UMR8220, Institut Universitaire de France, 75005, Paris, France
| | | |
Collapse
|
3
|
Zuo Z, Zhang X, Li S, Zhang Y, Liang J, Li C, Zheng S, Sun Z. Synergistic Promotion System of Montmorillonite with Cu 2+ and Benzalkonium Chloride for Efficient and Broad-Spectrum Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:4961-4971. [PMID: 37832028 DOI: 10.1021/acsabm.3c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
By intercalating montmorillonite (MMT) with Cu2+ and benzalkonium chloride (BAC), the present work constructed a synergistic promotion system (Cu2+/BAC/MMT). MMT not only enhances the thermal stability of Cu2+ and BAC but also facilitates the controlled release of Cu2+ and BAC. Concurrently, the introduction of BAC improves the material's organic compatibility. In vitro assays show that the "MIC+" of Cu2+/BAC/MMT against Staphylococcus aureus is merely 7.32 mg/L and 55.56 mg/L against Escherichia coli. At concentrations of 10 and 25 mg/L, Cu2+/BAC/MMT inactivates 100% of S. aureus and E. coli within 2 h, respectively. Furthermore, it is confirmed that the prepared Cu2+/BAC/MMT exhibits a long-term antibacterial ability through antibacterial experiments and release tests. Also, the biosafety of this material was also substantiated by in vitro cytotoxicity tests. These comprehensive findings indisputably portend that Cu2+/BAC/MMT holds promise to supplant antibiotics as an efficacious treatment modality for bacterial infections.
Collapse
Affiliation(s)
- Zengjie Zuo
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaoyu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shengping Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yujiao Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Jialin Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
4
|
Zhang X, Li S, Zhao N, Deng Y, Zuo Z, Li C, Zheng S, Sun Z. Construction of organic compatible kaolinite antibacterial material via a dry process and its enhanced antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Blessy Pricilla R, Bhuvanesh N, Vidhya B, Murugan S, Nandhakumar R. Exploration of GO-CuO nanocomposite for its antibacterial properties and potential application as a chemosensor in the sensing of L-Leucine. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.1956958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R. Blessy Pricilla
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - N. Bhuvanesh
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - B. Vidhya
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - S. Murugan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - R. Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| |
Collapse
|
6
|
Amoxicillin loaded bentonite, advanced low-cost antibacterial and environmentally friendly materials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Mokhtar A, Boukoussa B, Baba Ahmed A, Abdelkrim S, Djelad A, Hachemaoui M, Zaoui F, Bengueddach A, Sassi M. Alginate@Layered Silicate Composite Beads: Dye Elimination, Box–Behnken Design Optimization and Antibacterial Property. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02350-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Mekki A, Hachemaoui M, Mokhtar A, Issam I, Bennabi F, Iqbal J, Rahmani K, Bengueddach A, Boukoussa B. Catalytic behavior and antibacterial/antifungal activities of new MNPs/zeolite@alginate composite beads. Int J Biol Macromol 2022; 198:37-45. [PMID: 34942209 DOI: 10.1016/j.ijbiomac.2021.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
In this paper, a new family of composite materials was prepared based on calcium alginate and metal nanoparticle-loaded zeolite omega. Different types of metal nanoparticles (MNPs), namely Cu, Co and Fe, were loaded onto zeolite omega to test the performance of the resulting metal/zeolite@alginate composites towards the catalytic reduction of methylene blue dye. To examine their application field as broadly as possible, these composite beads were also tested as antibacterial and antifungal agents against several types of bacteria. Several techniques such as XRD, XRF, FTIR, XPS, SEM and TGA were used to characterize the samples. The obtained results showed that all the composite bead samples were effective in the reduction of MB dye. The composite Co/Zeolite@ALG with relatively low Co nanoparticle (NP) content was selected as the best performing catalyst due to its reduction of MB dye being completely achieved in 3 min with a rate constant of 1.4 min-1, which was attributed to its highly porous structure. The reuse tests conducted on the best-performing catalyst showed good results which persisted through five successive cycles. For antibacterial and antifungal activities, the Cu/Zeolite@ALG and Fe/Zeolite@ALG composites showed good activity with significant inhibition zones.
Collapse
Affiliation(s)
- Amel Mekki
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, 48000 Rélizane, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Farid Bennabi
- Laboratory of Chemistry, Applied University Centre of Belhadj Bouchaib, N 95, Aïn Témouchent, Algeria
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Khaled Rahmani
- Laboratoire Ecodéveloppement des espaces, Université de Sidi Belabbes, Djilali Lyabes, Algeria
| | - Abdelkader Bengueddach
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria.
| |
Collapse
|
9
|
Surface tailored Ru catalyst on magadiite for efficient hydrogen generation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Zahraoui M, Mokhtar A, Fadila B, Sassi M. Aluminum Magadiite Material And Nanosized Layered/Microporous Al-Magadiite/ZSM-5. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|