Al Hujran TA, Magharbeh MK, Habashneh AY, Al-Dmour RS, Aboelela A, Tawfeek HM. Insight into the Inclusion Complexation of Fluconazole with Sulfonatocalix[4]naphthalene in Aqueous Solution, Solid-State, and Its Antimycotic Activity.
Molecules 2022;
27:molecules27144425. [PMID:
35889298 PMCID:
PMC9317573 DOI:
10.3390/molecules27144425]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
The study aims to assess the interaction between fluconazole and sulfonatocalix[4]naphthalene towards enhancing its dissolution performance and antimycotic activity. A solubility study was carried out at different pH conditions, and the results revealed the formation of a 1:1 molar ratio fluconazole-sulfonatocalix[4]naphthalene inclusion complex with an AL type phase solubility diagrams. The solid powder systems of fluconazole-sulfonatocalix[4]naphthalene were prepared using kneaded and co-evaporation techniques and physical mixtures. DCS, PXRD, TGA-DTG, FT-IR, and in vitro dissolution performance characterize the prepared systems. According to physicochemical characterization, the co-evaporation approach produces an amorphous inclusion complex of the drug inside the cavity of sulfonatocalix[4]naphthalene. The co-evaporate product significantly increased the drug dissolution rate up to 93 ± 1.77% within 10 min, unlike other prepared solid powders. The antimycotic activity showed an increase substantially (p ≤ 0.05, t-test) antimycotic activity of fluconazole co-evaporate mixture with sulfonatocalix[4]naphthalene compared with fluconazole alone against clinical strains of Candida albicans and Candida glabrata. In conclusion, sulfonatocalix[4]naphthalene could be considered an efficient complexing agent for fluconazole to enhance its aqueous solubility, dissolution performance, and antimycotic activity.
Collapse