1
|
He L, Wei J, Ren Z, Li Y, Zhang Z, Li G, Huang F, Li S. Polyurethane Elastomers Strengthened by Pseudo[1]rotaxanes Based on Pillararenes. Angew Chem Int Ed Engl 2025; 64:e202421557. [PMID: 39714440 DOI: 10.1002/anie.202421557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
As a unique property of the interlocked structures, rotaxane allows for intramolecular motions between its wheel and axle components. Introduction of rotaxanes into polymers can endow them with distinctive macroscopic features and outstanding mechanical properties. Here, we prepare a copillar[5]arene with a hydroxyl and an amino-group on each end, which can spontaneously form a pseudo[1]rotaxane through intramolecular hydrogen bonds. This pseudo[1]rotaxane possesses a releasable extra alkyl chain, which is then incorporated into a linear polyurethane by reacting with a diisocyanate to prepare polyurethane elastomers with spring-like structures. The results of stress-strain test and dynamic mechanical analysis all indicate that sliding motions of the axle part on the pseudo[1]rotaxane in the polymer skeleton can greatly dissipate energy, which endows the elastomers with higher toughness and better fatigue resistance. Moreover, the addition of moderate amount of cuprous bromide to form cuprous-thioether coordination in the polymers can further improve the mechanical properties.
Collapse
Affiliation(s)
- Lang He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jialin Wei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Zhiqiang Ren
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yunxia Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|