1
|
da Silva LSA, Seman LO, Camponogara E, Mariani VC, Dos Santos Coelho L. Bilinear optimization of protein structure prediction: An exact approach via AB off-lattice model. Comput Biol Med 2024; 176:108558. [PMID: 38754216 DOI: 10.1016/j.compbiomed.2024.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Protein structure prediction (PSP) remains a central challenge in computational biology due to its inherent complexity and high dimensionality. While numerous heuristic approaches have appeared in the literature, their success varies. The AB off-lattice model, which characterizes proteins as sequences of A (hydrophobic) and B (hydrophilic) beads, presents a simplified perspective on PSP. This work presents a mathematical optimization-based methodology capitalizing on the off-lattice AB model. Dissecting the inherent non-linearities of the energy landscape of protein folding allowed for formulating the PSP as a bilinear optimization problem. This formulation was achieved by introducing auxiliary variables and constraints that encapsulate the nuanced relationship between the protein's conformational space and its energy landscape. The proposed bilinear model exhibited notable accuracy in pinpointing the global minimum energy conformations on a benchmark dataset presented by the Protein Data Bank (PDB). Compared to traditional heuristic-based methods, this bilinear approach yielded exact solutions, reducing the likelihood of local minima entrapment. This research highlights the potential of reframing the traditionally non-linear protein structure prediction problem into a bilinear optimization problem through the off-lattice AB model. Such a transformation offers a route toward methodologies that can determine the global solution, challenging current PSP paradigms. Exploration into hybrid models, merging bilinear optimization and heuristic components, might present an avenue for balancing accuracy with computational efficiency.
Collapse
Affiliation(s)
- Luiza Scapinello Aquino da Silva
- Electrical Engineering Graduate Program (PPGEE), Federal University of Parana (UFPR), Coronel Francisco Heraclito dos Santos, Curitiba, 81530-000, Paraná, Brazil.
| | - Laio Oriel Seman
- Department of Automation and Systems Engineering, Federal University of Santa Catarina (UFSC), Engenheiro Agronômico Andrei Cristian Ferreira, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Eduardo Camponogara
- Department of Automation and Systems Engineering, Federal University of Santa Catarina (UFSC), Engenheiro Agronômico Andrei Cristian Ferreira, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Viviana Cocco Mariani
- Electrical Engineering Graduate Program (PPGEE), Federal University of Parana (UFPR), Coronel Francisco Heraclito dos Santos, Curitiba, 81530-000, Paraná, Brazil; Mechanical Engineering Graduate Program (PGMec), Federal University of Parana (UFPR), Coronel Francisco Heraclito dos Santos, Curitiba, 81530-000, Paraná, Brazil
| | - Leandro Dos Santos Coelho
- Electrical Engineering Graduate Program (PPGEE), Federal University of Parana (UFPR), Coronel Francisco Heraclito dos Santos, Curitiba, 81530-000, Paraná, Brazil
| |
Collapse
|
2
|
Castillo O, Amador-Angulo L. A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2017.10.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
|
4
|
3D protein structure prediction using Imperialist Competitive algorithm and half sphere exposure prediction. J Theor Biol 2016; 391:81-7. [PMID: 26718864 DOI: 10.1016/j.jtbi.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022]
Abstract
Predicting the native structure of proteins based on half-sphere exposure and contact numbers has been studied deeply within recent years. Online predictors of these vectors and secondary structures of amino acids sequences have made it possible to design a function for the folding process. By choosing variant structures and directs for each secondary structure, a random conformation can be generated, and a potential function can then be assigned. Minimizing the potential function utilizing meta-heuristic algorithms is the final step of finding the native structure of a given amino acid sequence. In this work, Imperialist Competitive algorithm was used in order to accelerate the process of minimization. Moreover, we applied an adaptive procedure to apply revolutionary changes. Finally, we considered a more accurate tool for prediction of secondary structure. The results of the computational experiments on standard benchmark show the superiority of the new algorithm over the previous methods with similar potential function.
Collapse
|
5
|
Three-dimensional protein structure prediction: Methods and computational strategies. Comput Biol Chem 2014; 53PB:251-276. [DOI: 10.1016/j.compbiolchem.2014.10.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
|