1
|
Song Y, Li Y, Zhou J, Yu J, Hu Q, Yang F, Yin Z, Wang Y, Wang Y, Zhang X, Tao Y, Peng C, Liu S. IL-8-NF-κB-ALDH1A1 loop promotes the progression of intrahepatic cholangiocarcinoma. Hepatol Commun 2025; 9:e0664. [PMID: 40008905 PMCID: PMC11868433 DOI: 10.1097/hc9.0000000000000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a poor prognosis of malignant cancer with high lymph node metastasis and resistance to systemic therapies. Recent studies suggested that the involvement of IL-8 could promote ICC metastasis through epithelial-mesenchymal transition while the ICC-ALDH1A1high subtype is clarified by multi-omics study. The correlation between ALDH1A1 and IL-8 in ICC remains elusive. This study aims to further explore the roles and regulatory mechanisms of ALDH1A1 and IL-8 in ICC. METHODS We analyzed IL-8 and ALDH1A1 expression in ICC patients and cells. CXCR2 inhibitor (SB225002) was applied to inhibit the function of IL-8, and JSH-23 was applied to inhibit the NF-κB signaling pathway. We examined the effects of IL-8 inhibition on NF-κB, ALDH1A1 expression, and cell growth, migration, invasion, and stemness. Moreover, we examined the effects of ALDH1A1 on NF-κB, IL-8 expression, and cell growth, migration, invasion, and stemness. The effects of IL-8 and ALDH1A1 on tumor growth and NF-κB expression were validated using subcutaneous tumors in nude mice. RESULTS IL-8-derived tumor cells could promote ICC progression. The high expression of IL-8 in serum was associated with lymph node metastasis. IL-8 could upregulate ALDH1A1 expression by activating the NF-κB signaling pathway, promoting tumor progression. Upregulation of ALDH1A1 could activate NF-κB to promote IL-8 secretion, forming a positive feedback loop to promote tumor invasiveness and cell stemness in ICC. CONCLUSIONS IL-8-derived tumor cells could upregulate ALDH1A1 expression by activating the NF-κB signaling pathway, promoting tumor progression. Upregulation of ALDH1A1 could activate NF-κB to promote IL-8 secretion, forming a positive feedback loop to promote tumor invasiveness and cell stemness in ICC.
Collapse
Affiliation(s)
- Yinghui Song
- Central Laboratory, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yufeng Li
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jia Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jianfeng Yu
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Qianwei Hu
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Feicheng Yang
- Department of Pathology, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Zexi Yin
- Department of Pediatrics, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yizhi Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yueren Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Xinling Zhang
- Central Laboratory, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yuewei Tao
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Sulai Liu
- Central Laboratory, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| |
Collapse
|
2
|
Seetharaman S, Sankaranarayanan D, Gupta M. Magnesium-Based Temporary Implants: Potential, Current Status, Applications, and Challenges. J Funct Biomater 2023; 14:324. [PMID: 37367288 DOI: 10.3390/jfb14060324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Biomedical implants are important devices used for the repair or replacement of damaged or diseased tissues or organs. The success of implantation depends on various factors, such as mechanical properties, biocompatibility, and biodegradability of the materials used. Recently, magnesium (Mg)-based materials have emerged as a promising class of temporary implants due to their remarkable properties, such as strength, biocompatibility, biodegradability, and bioactivity. This review article aims to provide a comprehensive overview of current research works summarizing the above-mentioned properties of Mg-based materials for use as temporary implants. The key findings from in-vitro, in-vivo, and clinical trials are also discussed. Further, the potential applications of Mg-based implants and the applicable fabrication methods are also reviewed.
Collapse
Affiliation(s)
- Sankaranarayanan Seetharaman
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #07-08, Singapore 117575, Singapore
- Advanced Remanufacturing and Technology Centre (ARTC), Agency for Science, Technology and Research (A*STAR), 3 Cleantech Loop, #01/01 CleanTech Two, Singapore 637143, Singapore
| | - Dhivya Sankaranarayanan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #07-08, Singapore 117575, Singapore
| | - Manoj Gupta
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #07-08, Singapore 117575, Singapore
| |
Collapse
|
3
|
Song Y, Qin G, Du L, Hu H, Han Y. In vitro and in vivo assessment of biocompatibility of AZ31 alloy as biliary stents: a preclinical approach. Arch Med Sci 2022; 18:195-205. [PMID: 35154540 PMCID: PMC8826861 DOI: 10.5114/aoms.2020.92675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Biomaterial technology due to its lack of or minimal side effects in tissues has great potential. Traditionally biomaterials used were cobalt-chromium, stainless steel and nitinol alloys. Biomaterials such as magnesium (Mg) and zinc (Zn) have good biocompatibility and consequently can be a potential material for medical implants. To date, the effects of AZ31 alloy stent on cell apoptosis are still unclear. The current investigation was designed to determine the effect of AZ31 alloy stent on necrosis and apoptosis of common bile duct (CBD) epithelial cells. MATERIAL AND METHODS We experimented with application of different concentrations of AZ31 alloy stent to primary mouse extrahepatic bile epithelial cells (MEBECs) and estimated the effect on apoptosis and necrotic cells. Apoptosis and pro-apoptosis expression were estimated through real-time PCR. For in vivo protocol, we used rabbits, implanted the AZ31 bile stent, and estimated its effect on the CBD. AZ31 (40%) concentration showed an effect on the apoptotic and necrotic cells. RESULTS Real-time PCR revealed that AZ31 (40%) concentration increased the apoptotic genes such as NF-κB, caspase-3, Bax and Bax/Bcl-2 ratio as compared to the control group. In the in vivo experiment, AZ31 alloy stents were implanted into the CBD and showed an effect on the alteration the hematological, hepatic and non-hepatic parameters. CONCLUSIONS To conclude, it can be stated that AZ31 induces apoptosis via alteration in genes including nuclear factor kappa-B (NF-κB), caspase-3, Bax and Bax/Bcl-2 ratio and improved the hematological, hepatic and non-hepatic parameters.
Collapse
Affiliation(s)
- Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Gaoping Qin
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Lixue Du
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haitian Hu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yong Han
- Material Science and Engineering, Xi’an Jiaotong University, Beilin District, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Jana A, Das M, Balla VK. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J Biomed Mater Res A 2021; 110:462-487. [PMID: 34418295 DOI: 10.1002/jbm.a.37297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications. Initially, the corrosion assessment approaches to predict the degradation behavior of Mg alloys are discussed along with the measures to control rapid corrosion. Furthermore, this review attempts to explore the correlation between in vitro and in vivo corrosion behavior of different Mg alloys. It was found that the corrosion depends on experimental conditions, materials and the results of different assessment procedures hardly matches with each other. It has been demonstrated the corrosion rate of magnesium can be tailored by alloying elements, surface treatments and heat treatments. Various researches also studied different biocompatible coatings such as dicalcium phosphate dihydrate (DCPD), β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), polycaprolactone (PCL), polylactic acid (PLA), and so on, on Mg alloys to suppress rapid degradation and examine their influence on new bone regeneration as well. This review shows the need for a standard method of corrosion assessment to predict the in vivo corrosion rate based on in vitro data, and thus reducing the in vivo experimentation.
Collapse
Affiliation(s)
- Anuradha Jana
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitun Das
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Wu J, Zhao D, Lee B, Roy A, Yao R, Chen S, Dong Z, Heineman WR, Kumta PN. Effect of Lithium and Aluminum on the Mechanical Properties, In Vivo and In Vitro Degradation, and Toxicity of Multiphase Ultrahigh Ductility Mg-Li-Al-Zn Quaternary Alloys for Vascular Stent Application. ACS Biomater Sci Eng 2020; 6:1950-1964. [PMID: 33455316 DOI: 10.1021/acsbiomaterials.9b01591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnesium alloys are the most widely studied biodegradable metals for biodegradable vascular stent application. Two major issues with current magnesium alloy based stents are their low ductility and fast corrosion rates. Several studies have validated that introduction of Li into the magnesium alloys will significantly improve the ductility while alloying with Al will improve the corrosion resistance and strength. In the present study, we studied the effects of alloying different amounts of Li and Al on the Mg-Li-Al-Zn (LAZ) quaternary alloy system. Rods were made from four different LAZ alloys, namely, LAZ611, LAZ631, LAZ911, and LAZ931 following melting, casting, and then extrusion. Systematic assessment of mechanical properties, in vitro corrosion, cytotoxicity, and in vivo degradation including local and systemic toxicity conducted demonstrated the beneficial effects of Li and Al on the mechanical properties. Our results specifically suggest that alloying with Li significantly improved the ductility while Al enhanced the strength of the LAZ alloys. Four of the LAZ alloys exhibited different corrosion rates in Hank's balanced salt solution depending on the chemical composition. Indirect in vitro cytotoxicity tests also showed lower cytotoxicity for the alloys exhibiting higher corrosion resistance. In vivo corrosion rates in the mouse subcutaneous model showed different corrosion rates compared to the in vitro tests. Nevertheless, all of the four LAZ alloys displayed no local and systemic toxicity based on the histology analysis. This research study, therefore, demonstrated the benefits of using Li and Al as alloying elements in LAZ alloys and the potential use of LAZ alloys for vascular stent application.
Collapse
Affiliation(s)
- Jingyao Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daoli Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Boeun Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Abhijit Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Raymon Yao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shauna Chen
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Prashant N Kumta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int J Mol Sci 2019; 20:ijms20020255. [PMID: 30634646 PMCID: PMC6359522 DOI: 10.3390/ijms20020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/04/2022] Open
Abstract
Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.
Collapse
|
7
|
Abstract
Biodegradable Mg-based alloys have shown great potential as bone fixation devices or vascular stents. As implant biomaterials, the foreign body reaction (FBR) is an important issue to be studied, where the inflammatory cells play a key role. Here, we used two inflammatory cell lines i.e. THP-1 cells and THP-1 macrophages, to evaluate the effect of Mg–Nd–Zn–Zr alloy (denoted as JDBM) extracts on cell viability, death modes, cell cycle, phagocytosis, differentiation, migration and inflammatory response. The results showed that high-concentration extract induced necrosis and complete damage of cell function. For middle-concentration extract, cell apoptosis and partially impaired cell function were observed. TNF-α expression of macrophages was up-regulated by co-culture with extract in 20% concentration, but was down-regulated in the same concentration in the presence of LPS stimulation. Interestingly, the production of TNF-α decreased when macrophages were cultured in middle and high concentration extracts independent of LPS. Cell viability was also negatively affected by magnesium ions in JDBM extracts, which was a potential factor affecting cell function. Our results provide new information about the impact of Mg alloy extracts on phenotype of immune cells and the potential mechanism, which should be taken into account prior to clinical applications.
Collapse
|
8
|
Chen Y, Sun N, Zhang J, Zhang S, Zhao C, Xia J. Degradation of Mg-6Zn alloy stents does not influence the healing of the common bile duct in vivo. Exp Ther Med 2017; 13:2651-2656. [PMID: 28587326 PMCID: PMC5450693 DOI: 10.3892/etm.2017.4363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
To investigate the effects of Mg-6Zn alloy on the healing of the common bile duct (CBD), Mg-6Zn alloy stents were implanted into the CBDs of rabbits. Stainless steel stents were transplanted into a second group of rabbits to serve as a control. Computed tomography (CT) scanning was performed and weight loss was recorded to evaluate the in vivo degradation process. Hematoxylin and eosin staining and immunohistochemical analyses were performed to determine the expressions of transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and evaluate CBD healing. The Mg-6Zn stents maintained ~82 and ~50% of the original length, and ~90 and ~43% of the original CT value at 1 and 2 weeks post-operatively, respectively. The residual weights of the Mg-6Zn stents were ~89, ~42 and ~9% of the original weights at 1, 2 and 3 weeks post-operatively, respectively. At 3 weeks post-surgery, the CBD was completely healed, with no wounds observed in the 3 groups. VEGF expression in the Mg-6Zn stent group was lower than that in the stainless steel stent group at 3 weeks post-surgery (P=0.002). No significant differences were observed between the mean expressions of the TGF-β1 and bFGF genes at 1 and 2 weeks post-surgery. The results of the present study suggest that degradation of the Mg-6Zn alloy may not affect healing of the CBD.
Collapse
Affiliation(s)
- Yigang Chen
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Nianfeng Sun
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jie Zhang
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co., Ltd., Suzhou, Jiangsu 215513, P.R. China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jiazeng Xia
- Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
9
|
Qu S, Xia J, Yan J, Wu H, Wang H, Yi Y, Zhang X, Zhang S, Zhao C, Chen Y. In vivo and in vitro assessment of the biocompatibility and degradation of high-purity Mg anastomotic staples. J Biomater Appl 2017; 31:1203-1214. [PMID: 28181449 DOI: 10.1177/0885328217692948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Titanium (Ti) staples are not biodegradable, and anastomotic complications related to Ti staples are reported frequently. In the present study, the biocompatibility and degradation behavior of high-purity magnesium (HP Mg) staples with the small intestine were investigated. HP Mg staples did not affect the relative growth rate, cell cycle and apoptosis of primary rectal mucosal epithelial cells (IEC-6) in vitro. At one, two and three days after immersion in intestinal juice, the weight of the 30 rinsed HP Mg staples reduced by 7.5 ± 1.6, 10.6 ± 2.2 and 13.5 ± 2.1 mg, respectively, and those in the Hanks' solution reduced by 3.9 ± 0.8, 6.1 ± 1.2 and 7.1 ± 2.4 mg. Extracts of HP Mg staples were bio-safe for IEC-6, and the corrosion rate of HP staples was faster in the small intestinal juice than in the Hanks' solution. In the in vivo experiments, the small intestine of the minipigs was anastomosed by HP Mg and Ti staples. HP Mg staples neither affected important bio-chemical parameters nor induced serious inflammation or necrosis in the anastomosis tissues. The residual weight of a HP Mg staples (0.81 ± 0.13 mg) was 89.7% of the original weight (9 ± 0.09 mg) one month after surgery. The in vivo corrosion rate for one HP Mg staple was determined to be∼0.007 ± 0.001 mm·month-1. The preliminary results of the biocompatibility and degradation of high-purity Mg anastomotic staples are promising, and further studies will be initiated to study in more detail.
Collapse
Affiliation(s)
- Su Qu
- 1 Department of Gastroenterology, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Jiazeng Xia
- 2 Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Jun Yan
- 3 Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Hongliu Wu
- 4 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hao Wang
- 2 Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yi Yi
- 2 Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Xiaonong Zhang
- 4 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaoxiang Zhang
- 5 Suzhou Origin Medical Technology Co. Ltd., 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu, PR China
| | - ChangLi Zhao
- 4 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yigang Chen
- 2 Department of General Surgery, Wuxi Second Hospital, Nanjing Medical University, Jiangsu, PR China
| |
Collapse
|
10
|
Myrissa A, Braeuer S, Martinelli E, Willumeit-Römer R, Goessler W, Weinberg AM. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy. Acta Biomater 2017; 48:521-529. [PMID: 27845277 DOI: 10.1016/j.actbio.2016.11.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/28/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022]
Abstract
Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. STATEMENT OF SIGNIFICANCE In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable. Up to now, there is no study investigating the elements' metabolism of a REE-containing Magnesium alloy in an animal model. In this study, we examined the gadolinium distribution and accumulation in rat organs during the degradation of Mg10Gd. Our findings showed that Gd is accumulating in the animal organs, especially in spleen, liver and kidney. This study is of crucial benefit regarding a safe application of REE-containing Magnesium alloys in humans.
Collapse
|
11
|
Liu Y, Zheng S, Li N, Guo H, Zheng Y, Peng J. In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits. Sci Rep 2017; 7:40184. [PMID: 28084306 PMCID: PMC5234016 DOI: 10.1038/srep40184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
Mg-based metallic materials have been making continuing progress as vascular stents. However, the research of Mg-based materials as non-vascular stents is still at its primary stage. AZ31 stents hereby were implanted into the common bile duct of rabbits for 6 months. The results revealed an existence of 93.82 ± 1.36% and 30.89 ± 2.46% of the original volume after 1 and 3 month, respectively. Whole blood tests indicated an inflammation decreasing to normal level after 3 month implantation. A benign host response was observed via H&E staining. Nonuniform corrosion at the two ends of the stents was observed and considered the results of flow or local inflammation. Moreover, the application of Mg-based materials for different stenting treatment were reviewed and compared. Esophagus was hypothesized most destructive, whilst blood vessel and bile duct considered similar and less destructive. Trachea and nasal cavity were thought to be mildest.
Collapse
Affiliation(s)
- Yang Liu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shengmin Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Nan Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Huahu Guo
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
12
|
Gao H, Zhang M, Zhao J, Gao L, Li M. In vitro and in vivo degradation and mechanical properties of ZEK100 magnesium alloy coated with alginate, chitosan and mechano-growth factor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:450-61. [PMID: 27040239 DOI: 10.1016/j.msec.2016.02.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/08/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
The biocompatibility, ultimate loading capacity and biodegradability of magnesium alloy make it an ideal candidate in biomedical fields. Fabrications of multilayered coatings carrying sodium alginate (ALG), chitosan (CHI) and mechano-growth factor (MGF) on fluoride-pretreated ZEK100 magnesium alloy have been obtained via layer by layer (LBL) to reduce the degradation rate of magnesium alloy in this study. The modified surfaces of ZEK100 substrates were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and CARE EUT-1020 tester. Results reveal that multilayer-coated magnesium alloy can be successfully obtained with smooth surface morphology, and the mechanical properties of coated samples are almost the same as those of uncoated samples. However, the fatigue life of coated ZEK100 is slightly larger than that of uncoated samples after 1 day of immersion. By comparing the degradation of uncoated and multilayer-coated ZEK100 samples in vitro and in vivo, respectively, it is found that the degradation rate of ZEK100 samples can be inhibited by LBL modification on the surface of the sample; and the corrosion rate in vivo is lower than that in vitro, which help solve the rapid degradation problem of magnesium alloy. In terms of the visible symptom of tissues in the left femur medullary cavity and material responses on the surface, multilayer-coated ZEK100 magnesium alloy has a good biocompatibility. These results indicate that multilayer-coated ZEK100 may be a promising material for bone tissue repair.
Collapse
Affiliation(s)
- Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Meng Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Jin Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Lilan Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, PR China.
| | - Mingshuo Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
13
|
Jung O, Smeets R, Porchetta D, Kopp A, Ptock C, Müller U, Heiland M, Schwade M, Behr B, Kröger N, Kluwe L, Hanken H, Hartjen P. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta Biomater 2015; 23:354-363. [PMID: 26073090 DOI: 10.1016/j.actbio.2015.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro.
Collapse
|
14
|
Chen Y, Yan J, Wang X, Yu S, Wang Z, Zhang X, Zhang S, Zheng Y, Zhao C, Zheng Q. In vivo and in vitro evaluation of effects of Mg-6Zn alloy on apoptosis of common bile duct epithelial cell. Biometals 2014; 27:1217-30. [DOI: 10.1007/s10534-014-9784-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/30/2014] [Indexed: 12/28/2022]
|