1
|
Bianchi E, Ruggeri M, Vigani B, Aguzzi C, Rossi S, Sandri G. Synthesis and use of thermoplastic polymers for tissue engineering purposes. Int J Pharm X 2025; 9:100313. [PMID: 39807177 PMCID: PMC11729033 DOI: 10.1016/j.ijpx.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility. We also discuss how these materials can be applied in tissue engineering, mimicking tissues' structure and function, and stimulate mesenchymal stem cells differentiation and mechanotransduction.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Wu X, Yang Y, Zhan Y, Li K, Xiao F. Co-pyrolysis and combustion characteristics of polylactic acid and acrylonitrile-butadiene-styrene: insights into interactions, kinetics and synergistic effects. Front Chem 2025; 13:1552814. [PMID: 40230390 PMCID: PMC11994657 DOI: 10.3389/fchem.2025.1552814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) are the most commonly used filaments in 3D printing. To enable filament materials to withstand higher stresses, PLA and ABS are often blended (PLA/ABS). In this work, the co-pyrolysis and combustion properties of PLA/ABS blends of various ratios (75%/25%, 50%/50%, and 25%/75%) were analyzed. Thermogravimetric analysis showed that the catalytic pyrolysis of the blends became more intense as the proportion of PLA in PLA/ABS increased. Cone calorimetry tests indicated that the pyrolysis of ABS determines the peak heat release rate of the PLA/ABS blend. The higher amount of PLA allows the blend to pyrolyze at lower temperatures and the combustion reaction becomes more violent. The theoretical heat of combustion was calculated by correlating the average and maximum HRR with the heat flux through theoretical analysis. The theoretical heat of combustion obtained from the maximum HRR data is more reliable than from the average HRR data. This study has implications for the efficient utilization and fire protection of materials based on PLA/ABS.
Collapse
Affiliation(s)
| | | | | | - Kaiyuan Li
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Fei Xiao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
3
|
Yang X, Wang X, Tang L, Sun Z, Gao X, Zhao Y, Hou S, Shi J, Lv Q. Water triggered injectable polylactic acid hydrogel based on zwitterionic sulfobetaine modification for incompressible bleeding and tissue anti-adhesion. Mater Today Bio 2025; 30:101431. [PMID: 39830134 PMCID: PMC11742595 DOI: 10.1016/j.mtbio.2024.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Massive blood loss is the main cause of prehospital trauma-related death, the development of rapid and effective hemostatic materials is imminent. Injectable hydrogels have the advantages of covering irregular bleeding sites and quickly closing the wound. However, its inherent viscosity can easily precipitate tissue adhesion in vivo and other complications. Based on the anti-protein properties of zwitterion and our previous work about in situ hemostatic/anti-adhesion hydrogel material, we have synthesized a series of injectable hydrogel composed of sulfobetaine-modified polylactic acid (PLA) and gelatin (Gel). These hydrogels could form a smooth film structure by simple water triggering, thereby conferring anti-adhesive properties. We visualized the changes in surface hydrophobicity using fluorescent probes and demonstrated tissue adhesion, rapid hydrophobic interface response, as well as rapid hemostasis for incompressible wounds through in vivo and in vitro experiments. Additionally, we explored the application of hydrogel materials in the scenario of postoperative bleeding, which can effectively prevent unnecessary adhesion through rapid film formation and the anti-protein property of sulfobetaine. We believe that this multifunctional hemostatic hydrogel has the potential to serve as a prehospital emergency treatment of incompressible bleeding and benefit to the postoperative recovery of patients.
Collapse
Affiliation(s)
- Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Lizong Tang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Zhiguang Sun
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Xing Gao
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Hospital, Tianjin University, Tianjin, 300072, China
| | - Yanmei Zhao
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
| |
Collapse
|
4
|
Chandra Hasa JM, Narayanan P, Pramanik R, Arockiarajan A. Harnessing machine learning algorithms for the prediction and optimization of various properties of polylactic acid in biomedical use: a comprehensive review. Biomed Mater 2025; 20:022002. [PMID: 39787713 DOI: 10.1088/1748-605x/ada840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Machine learning (ML) has emerged as a transformative tool in various industries, driving advancements in key tasks like classification, regression, and clustering. In the field of chemical engineering, particularly in the creation of biomedical devices, personalization is essential for ensuring successful patient recovery and rehabilitation. Polylactic acid (PLA) is a material with promising potential for applications like tissue engineering, orthopedic implants, drug delivery systems, and cardiovascular stents due to its biocompatibility and biodegradability. Additive manufacturing (AM) allows for adjusting print parameters to optimize the properties of PLA components for different applications. Although past research has explored the integration of ML and AM, there remains a gap in comprehensive analyses focusing on the impact of ML on PLA-based biomedical devices. This review examines the most recent developments in ML applications within AM, highlighting its ability to revolutionize the utilization of PLA in biomedical engineering by enhancing material properties and optimizing manufacturing processes. Moreover, this review is in line with the journal's emphasis on bio-based polymers, polymer functionalization, and their biomedical uses, enriching the understanding of polymer chemistry and materials science.
Collapse
Affiliation(s)
- J M Chandra Hasa
- Department of Aerospace Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
| | - P Narayanan
- Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
| | - R Pramanik
- Faculty of Science & Engineering, University of Groningen, Groningen, The Netherlands
| | - A Arockiarajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, 600036 Chennai, India
- Ceramic Technologies Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology-Madras (IIT Madras), 600036 Chennai, India
| |
Collapse
|
5
|
Heikkilä H, Reunanen V, Hyytiäinen HK, Junnila JJ, Laitinen-Vapaavuori O, Keränen P. Randomized, Blinded, Controlled Clinical Trial of Polylactide-Collagen Scaffold in Treatment of Shoulder Osteochondritis Dissecans in Dogs. Vet Comp Orthop Traumatol 2024; 37:286-296. [PMID: 39048025 PMCID: PMC11555192 DOI: 10.1055/s-0044-1788726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The aim of our study was to investigate a degradable polylactide-collagen scaffold (COPLA) in the treatment of shoulder osteochondritis dissecans (OCD) in dogs. STUDY DESIGN The study was a controlled, randomized, blinded clinical trial with a parallel group design with a 1.5-year follow-up. Twenty dogs with uni- or bilateral shoulder OCD (29 shoulders) were randomized to receive a COPLA or arthroscopic debridement only (Control). The outcome of treatment was assessed with gait and stance analysis, passive range of motion measurement, pain and lameness evaluation, Helsinki Chronic Pain Index, and computed tomography (CT). RESULTS Eighteen dogs (25 shoulders) completed the study. The clinical outcome variables improved significantly from baseline in COPLA and Control groups after treatment but no significant differences emerged between groups. Significantly fewer COPLA than Control shoulders had osteoarthritis (OA) in CT at 6 months (p = 0.019) but the difference was not significant at 1.5 years. At 1.5 years, all dogs were sound and pain-free in joint palpation, but OA was diagnosed in 13/18 dogs (18/25 shoulders) with CT. CONCLUSION The results suggest that COPLA scaffold slowed down the development of OA at 6 months but it did not improve the clinical recovery or prevent OA in dogs with shoulder OCD in long-term follow-up at 1.5 years compared with arthroscopic debridement only. Regardless of the treatment method, clinical recovery was good, but OA developed in the majority of dogs.
Collapse
Affiliation(s)
- Helka Heikkilä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Lahti Veterinary Hospital, IVC Evidensia, Lahti, Finland
| | - Vilma Reunanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heli K. Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Outi Laitinen-Vapaavuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Pauli Keränen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
7
|
Maitra J, Bhardwaj N. Development of bio-based polymeric blends - a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250518 DOI: 10.1080/09205063.2024.2394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The current impetus to develop bio-based polymers for greater sustainability and lower carbon footprint is necessitated due to the alarming depletion of fossil resources, concurrent global warming, and related environmental issues. This article reviews the development of polymeric blends based on bio-based polymers. The focus on bio-based polymers is due to their greater 'Sustainability factor' as they are derived from renewable resources. The article delves into the synthesis of both conventional and highly biodegradable bio-based polymers, each crafted from feedstocks derived from nature's bounty. What sets this work apart is the exploration of blending existing bio-based polymers, culminating in the birth of entirely new materials. This review provides a comprehensive overview of the recent advancements in the development of bio-based polymeric blends, covering their synthesis, properties, applications, and potential contributions to a more sustainable future. Despite their potential benefits, bio-based materials face obstacles such as miscibility, processability issues and disparities in physical properties compared to conventional counterparts. The paper also discusses significance of compatibilizers, additives and future directions for the further advancement of these bio-based blends. While bio-based polymer blends hold promise for environmentally benign applications, many are still in the research phase. Ongoing research and technological innovations are driving the evolution of these blends as viable alternatives, but continued efforts are needed to ensure their successful integration into mainstream industrial practices. Concerted efforts from both researchers and industry stakeholders are essential to realize the full potential of bio-based polymers and accelerate their adoption on a global scale.
Collapse
Affiliation(s)
- Jaya Maitra
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nikita Bhardwaj
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Pereira Vasconcelos D, Leite Pereira C, Couto M, Neto E, Ribeiro B, Albuquerque F, Freitas A, Alves CJ, Klinkenberg G, McDonagh BH, Schmid RB, Seitz AM, de Roy L, Ignatius A, Haaparanta A, Muhonen V, Sarmento B, Lamghari M. Nanoenabled Immunomodulatory Scaffolds for Cartilage Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage regeneration is a challenge in tissue engineering. Although diverse materials have been developed for this purpose, cartilage regeneration remains suboptimal. The integration of nanomaterials into 3D network materials holds great potential in the improvement of key mechanical properties, particularly important for osteochondral replacement scaffolds and even to function as carriers for disease‐modifying drugs or other regulatory signals. In this study, a simple yet effective cell‐free nanoenabled Col‐PLA scaffold specially designed to enhance cartilage regeneration and modulate inflammatory response is proposed, by incorporating poly(lactic‐co‐glycolic acid) (PLGA) ibuprofen nanoparticles (NPs) into a collagen/polylactide (Col‐PLA) matrix. The developed nanoenabled scaffold successfully decreases IL‐1β release and leads to primary human chondrocytes survival, ultimately restoring extracellular matrix (ECM) production under inflammatory conditions. The nanoenabled Col‐PLA scaffolds secretome effectively decreases macrophage invasion in vitro, as well as neutrophil infiltration and inflammatory mediators’, namely the complement component C5/C5a, C‐reactive protein, IL‐1β, MMP9, CCL20, and CXCL1/KC production in vivo in a rodent air‐pouch model. Overall, the established nanoenabled scaffold has the potential to support chondrogenesis as well as modulate inflammatory response, overcoming the limitations of traditional tissue engineering strategies.
Collapse
Affiliation(s)
- Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Marina Couto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Beatriz Ribeiro
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Filipe Albuquerque
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Alexandra Freitas
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Cecília J. Alves
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Geir Klinkenberg
- SINTEF Industry Department of Biotechnology and Nanomedicine Trondheim 7034 Norway
| | | | | | - Andreas M. Seitz
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Luisa de Roy
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | | | - Virpi Muhonen
- Askel Healthcare Ltd Siltasaarenkatu 8‐10 Helsinki 00530 Finland
| | - Bruno Sarmento
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Gandra 4585‐116 Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| |
Collapse
|
9
|
Yalcinkaya B, Strejc M, Yalcinkaya F, Spirek T, Louda P, Buczkowska KE, Bousa M. An Innovative Approach for Elemental Mercury Adsorption Using X-ray Irradiation and Electrospun Nylon/Chitosan Nanofibers. Polymers (Basel) 2024; 16:1721. [PMID: 38932071 PMCID: PMC11207462 DOI: 10.3390/polym16121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m3 of Hg per minute. Nevertheless, a concentration of 10 microg/m3 of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m3. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects.
Collapse
Affiliation(s)
- Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; (P.L.); (K.E.B.); (M.B.)
| | | | - Fatma Yalcinkaya
- Faculty of Mechatronics, Institute for New Technologies and Applied Informatics, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Tomas Spirek
- Green Energy Consulting, s.r.o., Pod Altánem 9/105, 100 00 Prague, Czech Republic;
| | - Petr Louda
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; (P.L.); (K.E.B.); (M.B.)
- Faculty of Mechanical Engineering, University of Kalisz, ul. Nowy Świat 4, 62-800 Kalisz, Poland
| | - Katarzyna Ewa Buczkowska
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; (P.L.); (K.E.B.); (M.B.)
| | - Milan Bousa
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; (P.L.); (K.E.B.); (M.B.)
| |
Collapse
|
10
|
Dilmani SA, Koç S, Erkut TS, Gümüşderelioğlu M. Polymer-clay nanofibrous wound dressing materials containing different boron compounds. J Trace Elem Med Biol 2024; 83:127408. [PMID: 38387426 DOI: 10.1016/j.jtemb.2024.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.
Collapse
Affiliation(s)
- Sara Asghari Dilmani
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Sena Koç
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Tülay Selin Erkut
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey.
| |
Collapse
|
11
|
Harb SV, Kolanthai E, Backes EH, Beatrice CAG, Pinto LA, Nunes ACC, Selistre-de-Araújo HS, Costa LC, Seal S, Pessan LA. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Tissue Eng Regen Med 2024; 21:223-242. [PMID: 37856070 PMCID: PMC10825090 DOI: 10.1007/s13770-023-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of β-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.
Collapse
Affiliation(s)
- Samarah V Harb
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H Backes
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Cesar A G Beatrice
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Leonardo A Pinto
- Department of Materials Engineering (DEMa), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ana Carolina C Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Heloisa S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz Antonio Pessan
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
12
|
Mutlu B, Çiftçi F, Üstündağ CB, Çakır-Koç R. Lavandula stoechas extract incorporated polylactic acid nanofibrous mats as an antibacterial and cytocompatible wound dressing. Int J Biol Macromol 2023; 253:126932. [PMID: 37729996 DOI: 10.1016/j.ijbiomac.2023.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
In recent years, great efforts have been devoted to the design and production of bioactive wound dressings that promote skin regeneration and prevent infection. Many plant extracts and essential oils have been widely accepted in traditional medicine for a wide variety of medicinal purposes, especially wound healing. Over the past decade, many studies have focused on manufacturing and designing wound dressings containing plant compounds and extracts. In this study, Lavandula stoechas extract (LSE) (0.25 %, 0.5 %, and 1%wt) incorporated-polylactic acid (PLA) nanofibrous mats were successfully produced and characterized. Microstructural analysis by SEM revealed that the fiber diameter changed with the increase in the amount of LSE. Also, the nanofibrous mats were evaluated for their in vitro antibacterial, cytotoxicity, and wound healing properties for their use as a wound dressing material. According to the results of the disc diffusion test, PLA nanofibrous mats containing LSE %1 showed 9.65 ± 0.46 and 7.37 ± 0.03 inhibition zone (mm) against E. coli and S. aureus, respectively. According to the results of the in vitro wound healing assay, mats containing 0.5 % LSE showed better-wound closure activity compared to the control. Our results show that LSE-incorporated nanofibrous dressings can be an effective alternative with good antimicrobial activity.
Collapse
Affiliation(s)
- Betül Mutlu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye.
| | - Fatih Çiftçi
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey
| | - Cem Bülent Üstündağ
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye
| | - Rabia Çakır-Koç
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Turkish Biotechnology Institute, Health Institutes of Turkey (TUSEB), İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye
| |
Collapse
|
13
|
Alam MR, Alimuzzaman S, Shahid MA, Fahmida-E-Karim, Hoque ME. Collagen/ Nigella sativa/chitosan inscribed electrospun hybrid bio-nanocomposites for skin tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-22. [PMID: 36779683 DOI: 10.1080/09205063.2023.2170139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The sophisticated new tissue regeneration focused on nanocomposite with different morphologies achieved through advanced manufacturing technology with the inclusion of bio-inscribed materials has piqued the research community's interest. This research aims at developing hybrid bio-nanocomposites with collagen (Col), Nigella sativa (Ns) oil and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Fiber morphologies through scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), moisture management, tensile test, antibacterial activity, cell cytotoxicity and wound healing through rabbit model of the fabricated hybrid bio-nanocomposites were investigated. It is worth noting that water-soluble Col (above 60% solution) does not form Taylor cones during electrospinning because unable to overcome the surface tension of the solution (viscosity) to form fibers. The results show that water soluble Col (50% solution) to Cs (25% solution) and Ns (25% solution) has good fiber formation with mean diameter 384 ± 27 nm and degree of porosity is 79%. The fast-absorbing and slow-drying hybrid bio-nanocomposites maintain a moist environment for wounds and allowing gaseous exchange for cell migration and proliferation by the synergistic effects of bio-polymers. All of the biopolymers in bio-nanocomposite improve the H-bonds, which accounts for enough tensile strength to withstand cell pulling force. The antibacterial ZOI concentrations against S. aureus and E. coli were 10 and 8 mm, respectively, which appeared to be sufficient to inhibit bacterial action with 100% cell viability (cytotoxicity). The synergistic effects of Ns and Cs improve tissue regeneration, while native Col improves antibacterial activity, and the rabbit model achieves approximately 84% wound closure in only 10 days, which is 1.5 times faster than the control model. So, the fabricated hybrid bio-composites may be useful for skin tissue engineering.
Collapse
Affiliation(s)
- Md Rubel Alam
- Department of Knitwear Engineering, BGMEA University of Fashion & Technology (BUFT), Dhaka, Bangladesh
| | - Shah Alimuzzaman
- Department of Fabric Engineering, Bangladesh University of Textiles (BUTEX), Dhaka, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh
| | - Fahmida-E-Karim
- Department of Textile Engineering, BGMEA University of Fashion & Technology (BUFT), Dhaka, Bangladesh
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| |
Collapse
|
14
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
15
|
Alam MR, Shahid MA, Alimuzzaman S, Khan AN. Sources, extractions and applications of bio-maker collagen- A review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Trifanova EM, Khvorostina MA, Mariyanats AO, Sochilina AV, Nikolaeva ME, Khaydukov EV, Akasov RA, Popov VK. Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196547. [PMID: 36235084 PMCID: PMC9573624 DOI: 10.3390/molecules27196547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
Modern biocompatible materials of both natural and synthetic origin, in combination with advanced techniques for their processing and functionalization, provide the basis for tissue engineering constructs (TECs) for the effective replacement of specific body defects and guided tissue regeneration. Here we describe TECs fabricated using electrospinning and 3D printing techniques on a base of synthetic (polylactic-co-glycolic acids, PLGA) and natural (collagen, COL, and hyaluronic acid, HA) polymers impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 upconversion nanoparticles (UCNPs) for in vitro control of the tissue/scaffold interaction. Polymeric structures impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 nanoparticles were visualized with high optical contrast using laser irradiation at 976 nm. We found that the photoluminescence spectra of impregnated scaffolds differ from the spectrum of free UCNPs that could be used to control the scaffold microenvironment, polymer biodegradation, and cargo release. We proved the absence of UCNP-impregnated scaffold cytotoxicity and demonstrated their high efficiency for cell attachment, proliferation, and colonization. We also modified the COL-based scaffold fabrication technology to increase their tensile strength and structural stability within the living body. The proposed approach is a technological platform for "smart scaffold" development and fabrication based on bioresorbable polymer structures impregnated with UCNPs, providing the desired photoluminescent, biochemical, and mechanical properties for intravital visualization and monitoring of their behavior and tissue/scaffold interaction in real time.
Collapse
Affiliation(s)
- Ekaterina M. Trifanova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Maria A. Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Aleksandra O. Mariyanats
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Anastasia V. Sochilina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | | | - Evgeny V. Khaydukov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Roman A. Akasov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Vladimir K. Popov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| |
Collapse
|
17
|
Chen M, Jiang R, Deng N, Zhao X, Li X, Guo C. Natural polymer-based scaffolds for soft tissue repair. Front Bioeng Biotechnol 2022; 10:954699. [PMID: 35928962 PMCID: PMC9343850 DOI: 10.3389/fbioe.2022.954699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissues such as skin, muscle, and tendon are easily damaged due to injury from physical activity and pathological lesions. For soft tissue repair and regeneration, biomaterials are often used to build scaffolds with appropriate structures and tailored functionalities that can support cell growth and new tissue formation. Among all types of scaffolds, natural polymer-based scaffolds attract much attention due to their excellent biocompatibility and tunable mechanical properties. In this comprehensive mini-review, we summarize recent progress on natural polymer-based scaffolds for soft tissue repair, focusing on clinical translations and materials design. Furthermore, the limitations and challenges, such as unsatisfied mechanical properties and unfavorable biological responses, are discussed to advance the development of novel scaffolds for soft tissue repair and regeneration toward clinical translation.
Collapse
Affiliation(s)
- Meiwen Chen
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Rui Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou, Zhejiang
| | - Xiumin Zhao
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
| | - Xiangjuan Li
- Hangzhou Women’s Hospital, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang
- *Correspondence: Xiangjuan Li, ; Chengchen Guo,
| |
Collapse
|
18
|
3D Printing for Cartilage Replacement: A Preliminary Study to Explore New Polymers. Polymers (Basel) 2022; 14:polym14051044. [PMID: 35267866 PMCID: PMC8914867 DOI: 10.3390/polym14051044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
The use of additive manufacturing technologies for biomedical applications must begin with the knowledge of the material to be used, by envisaging a very specific application rather than a more general aim. In this work, the preliminary study was focused on considering the cartilaginous tissue. This biological tissue exhibits different characteristics, such as thickness and mechanical properties, depending on its specific function in the body. Due to the lack of vascularization, cartilage is a supporting connective tissue with limited capacity for recovery and regeneration. For this reason, any approach, whether to repair/regenerate or as a total replacement, needs to fulfill the adequate mechanical and chemical properties of the surrounding native cartilage to be successful. This work aims to explore the possibility of using new polymers for cartilage total replacement approaches with polymeric materials processed with the specific 3D printing technique of fused filament fabrication (FFF). The materials studied were Nylon® 12 (PA12), already described for this purpose, and LAY-FOMM® 60 (FOMM). FOMM has not been described in the literature for biomedical purposes. Therefore, the chemical, thermal, swelling capacity, and mechanical properties of the filaments were thoroughly characterized to better understand the structure–properties–application relationships of this new polymer. In addition, as the FFF technology is temperature based, the properties were also evaluated in the printed specimens. Due to the envisaged application, the specimens were also characterized in the wet state. When comparing the obtained results with the properties of native cartilage, it was possible to conclude that: (i) PA12 exhibits low swelling capacity, while FOMM, in its dry and wet forms, has a higher swelling capacity, closer to that of native cartilage; (ii) the mechanical properties of the polymeric materials, especially PA12, are higher than those of native cartilage; and (iii) from the mechanical properties evaluated by ultra-micro hardness tests, the values for FOMM indicate that this material could be a good alternative for cartilage replacement in older patients. This preliminary study, essentially devoted to expanding the frontiers of the current state of the art of new polymeric materials, provides valuable indications for future work targeting the envisaged applications.
Collapse
|
19
|
Xu Y, Zhang F, Zhai W, Cheng S, Li J, Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers (Basel) 2022; 14:566. [PMID: 35160556 PMCID: PMC8840342 DOI: 10.3390/polym14030566] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of large-area irregular bone defects is one of the complex problems in orthopedic clinical treatment. The bone repair scaffolds currently studied include electrospun membrane, hydrogel, bone cement, 3D printed bone tissue scaffolds, etc., among which 3D printed polymer-based scaffolds Bone scaffolds are the most promising for clinical applications. This is because 3D printing is modeled based on the im-aging results of actual bone defects so that the printed scaffolds can perfectly fit the bone defect, and the printed components can be adjusted to promote Osteogenesis. This review introduces a variety of 3D printing technologies and bone healing processes, reviews previous studies on the characteristics of commonly used natural or synthetic polymers, and clinical applications of 3D printed bone tissue scaffolds, analyzes and elaborates the characteristics of ideal bone tissue scaffolds, from t he progress of 3D printing bone tissue scaffolds were summarized in many aspects. The challenges and potential prospects in this direction were discussed.
Collapse
Affiliation(s)
- Yuanhang Xu
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Feiyang Zhang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Weijie Zhai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Shujie Cheng
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Jinghua Li
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
| | - Yi Wang
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China; (Y.X.); (F.Z.); (W.Z.); (S.C.)
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471000, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
P B S, S G, J P, Muthusamy S, R N, Krishnakumar GS, R S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol 2022; 195:179-189. [PMID: 34863969 DOI: 10.1016/j.ijbiomac.2021.11.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sathish P B
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gayathri S
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Priyanka J
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Shalini Muthusamy
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Narmadha R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gopal Shankar Krishnakumar
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Selvakumar R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| |
Collapse
|
21
|
Gögele C, Wiltzsch S, Lenhart A, Civilleri A, Weiger TM, Schäfer-Eckart K, Minnich B, Forchheimer L, Hornfeck M, Schulze-Tanzil G. Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112421. [PMID: 34702508 DOI: 10.1016/j.msec.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Sven Wiltzsch
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Armin Lenhart
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Aurelio Civilleri
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Civil, Environmental, Aerospace, Materials Engineering, Universita' di Palermo, Palermo, Italy.
| | - Thomas Martin Weiger
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Kerstin Schäfer-Eckart
- Bone marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany.
| | - Bernd Minnich
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Lukas Forchheimer
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Markus Hornfeck
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
22
|
Cha M, Jin YZ, Park JW, Lee KM, Han SH, Choi BS, Lee JH. Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration. Biomater Res 2021; 25:35. [PMID: 34706765 PMCID: PMC8554986 DOI: 10.1186/s40824-021-00233-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Critical bone defects remain challenges for clinicians, which cannot heal spontaneously and require medical intervention. Following the development of three-dimensional (3D) printing technology is widely used in bone tissue engineering for its outstanding customizability. The 3D printed scaffolds were usually accompanied with growth factors, such as bone morphometric protein 2 (BMP-2), whose effects have been widely investigated on bone regeneration. We previously fabricated and investigated the effect of a polylactic acid (PLA) cage/Biogel scaffold as a carrier of BMP-2. In this study, we furtherly investigated the effect of another shape of PLA cage/Biogel scaffold as a carrier of BMP-2 in a rat calvaria defect model and an ectopic ossification (EO) model. METHOD The PLA scaffold was printed with a basic commercial 3D printer, and the PLA scaffold was combined with gelatin and alginate-based Biogel and BMP-2 to induce bone regeneration. The experimental groups were divided into PLA scaffold, PLA scaffold with Biogel, PLA scaffold filled with BMP-2, and PLA scaffold with Biogel and BMP-2 and were tested both in vitro and in vivo. One-way ANOVA with Bonferroni post-hoc analysis was used to determine whether statistically significant difference exists between groups. RESULT The in vitro results showed the cage/Biogel scaffold released BMP-2 with an initial burst release and followed by a sustained slow-release pattern. The released BMP-2 maintained its osteoinductivity for at least 14 days. The in vivo results showed the cage/Biogel/BMP-2 group had the highest bone regeneration in the rat calvarial defect model and EO model. Especially, the bone regenerated more regularly in the EO model at the implanted sites, which indicated the cage/Biogel had an outstanding ability to control the shape of regenerated bone. CONCLUSION In conclusion, the 3D printed PLA cage/Biogel scaffold system was proved to be a proper carrier for BMP-2 that induced significant bone regeneration and induced bone formation following the designed shape.
Collapse
Affiliation(s)
- Misun Cha
- Biotechnology Institute, Medifab Co. LTD., 70, Dusan-ro, Doksan-dong, Geumcheon-gu, Seoul, 085-84, South Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Yuan-Zhe Jin
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea.,Spine Department, The First Hospital of Jilin University, Changchun, 130031, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jin Wook Park
- Biotechnology Institute, Medifab Co. LTD., 70, Dusan-ro, Doksan-dong, Geumcheon-gu, Seoul, 085-84, South Korea
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Shi Huan Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea
| | - Byung Sun Choi
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, 39 Boramae Gil, Dongjak-Gu, Seoul, 156-707, South Korea. .,Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, 110-799, South Korea. .,Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 110-799, South Korea.
| |
Collapse
|
23
|
Chen L, Huang Y, Yang R, Xiao J, Gao J, Zhang D, Cao D, Ke X. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability. Bioengineered 2021; 12:8031-8042. [PMID: 34670479 PMCID: PMC8806928 DOI: 10.1080/21655979.2021.1982270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to prepare a kind of controlled-releasing insulin-like growth factor 1 (IGF-1)/spider silk protein nanofibrous membrane using a electrostatic spinning method and evaluated its effect on the cell viability of endothelial progenitor cells (EPCs). Recombinant spidroin named as GMCDRSSP-IgF-1 was electro-spun into nanofibrous membrane which can be degraded by protease and be capable of sustained-release of IGF-1. The membrane can be degraded after being treated with thrombin. The release assay results showed that IGF-1 concentration could be maintained at 20 ng/ml for a long time with treatment of Tobacco Etch Virus (TEV) protease. The viability of EPCs on GMCDRSSP-IgF-1 nanofibrous membrane was significantly increased with the presence of TEV protease. The controlled and sustained release of IGF-1 from the nanofibrous membrane could promote the adhesion and viability of EPCs. In summary, the nanofibrous membrane that exhibits controlled degradation and sustained release of IGF-1 was prepared with electrostatic spinning from genetically modified recombinant spider silk protein. The nanofibrous membrane exhibited good blood compatibility and cytocompatibility. With the presence of TEV protease, the sustained-release of IGF-1 significantly promoted the adhesion and viability of EPCs. The new nanofibrous membrane can be potentially used as a scaffold for EPCs culture in vitro and future in vivo studies.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Yulang Huang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Jian Xiao
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Debao Zhang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Duanwen Cao
- Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China.,Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Biagini G, Senegaglia AC, Pereira T, Berti LF, Marcon BH, Stimamiglio MA. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Front Bioeng Biotechnol 2021; 9:700862. [PMID: 34568295 PMCID: PMC8455839 DOI: 10.3389/fbioe.2021.700862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering is a branch of regenerative medicine, which comprises the combination of biomaterials, cells and other bioactive molecules to regenerate tissues. Biomaterial scaffolds act as substrate and as physical support for cells and they can also reproduce the extracellular matrix cues. Although tissue engineering applications in cellular therapy tend to focus on the use of specialized cells from particular tissues or stem cells, little attention has been paid to endothelial progenitors, an important cell type in tissue regeneration. We combined 3D printed poly(lactic acid) scaffolds comprising two different pore sizes with human adipose-derived stromal cells (hASCs) and expanded CD133+ cells to evaluate how these two cell types respond to the different architectures. hASCs represent an ideal source of cells for tissue engineering applications due to their low immunogenicity, paracrine activity and ability to differentiate. Expanded CD133+ cells were isolated from umbilical cord blood and represent a source of endothelial-like cells with angiogenic potential. Fluorescence microscopy and scanning electron microscopy showed that both cell types were able to adhere to the scaffolds and maintain their characteristic morphologies. The porous PLA scaffolds stimulated cell cycle progression of hASCs but led to an arrest in the G1 phase and reduced proliferation of expanded CD133+ cells. Also, while hASCs maintained their undifferentiated profile after 7 days of culture on the scaffolds, expanded CD133+ cells presented a reduction of the von Willebrand factor (vWF), which affected the cells’ angiogenic potential. We did not observe changes in cell behavior for any of the parameters analyzed between the scaffolds with different pore sizes, but the 3D environment created by the scaffolds had different effects on the cell types tested. Unlike the extensively used mesenchymal stem cell types, the 3D PLA scaffolds led to opposite behaviors of the expanded CD133+ cells in terms of cytotoxicity, proliferation and immunophenotype. The results obtained reinforce the importance of studying how different cell types respond to 3D culture systems when considering the scaffold approach for tissue engineering.
Collapse
Affiliation(s)
- Giuliana Biagini
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | | | - Tarciso Pereira
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| |
Collapse
|
25
|
Lu Z, Zhang B, Gong H, Li J. Fabrication of hierarchical porous poly (l-lactide) (PLLA) fibrous membrane by electrospinning. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 2021; 182:168-178. [PMID: 33838184 DOI: 10.1016/j.ijbiomac.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Hafez Jafari
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mamak Bakhtiari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Beeta Tavana
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
27
|
Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, Coradin T, Hélary C. Nanostructured Dense Collagen-Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004213. [PMID: 33854901 PMCID: PMC8025010 DOI: 10.1002/advs.202004213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/15/2023]
Abstract
Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacao999078China
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Olivier Ronsin
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Basile Gravez
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Nicolette Farman
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tristan Baumberger
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Frédéric Jaisser
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Thibaud Coradin
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Christophe Hélary
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| |
Collapse
|
28
|
Bozhokin MS, Bozhkova SA, Netylko GI, Nakonechny DG, Nashchekina YA, Blinova MI, Anisimova LO. Experimental Replacement of the Surface Defect of Rat Hyaline Cartilage by a Cell-Engineered Construct. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
30
|
Weathering of Antibacterial Melt-Spun Polyfilaments Modified by Pine Rosin. Molecules 2021; 26:molecules26040876. [PMID: 33562272 PMCID: PMC7916070 DOI: 10.3390/molecules26040876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs). This work focused on the usage of pine rosin as natural antibacterial chemical and analysed the weathering of melt-spun polyethylene (PE) and poly lactic acid (PLA) polyfilaments. A selected copolymer surfactant, as an additional chemical, was studied to better integrate rosin with the molecular structure of the plastics. The results reveal that a high 20 w-% of rosin content can be obtained by surfactant addition in non-oriented PE and PLA melt-spun polyfilaments. According to the VOC analysis, interestingly, the total emissions from the melt-spun PE and PLA fibres were lower for rosin-modified (10 w-%) fibres and when analysed below 60 °C. The PE fibres of the polyfilaments were found to be clearly more durable in terms of the entire weathering study, i.e., five weeks of ultraviolet radiation, thermal ageing and standard washing. The antibacterial response against Gram-positive Staphylococcus aureus by the rosin-containing fibres was determined to be at the same level (decrease of 3–5 logs cfu/mL) as when using 1.0 w-% of commercial silver-containing antimicrobial. For the PE polyfilaments with rosin (10 w-%), full killing response (decrease of 3–5 logs cfu/mL) remained after four weeks of accelerated ageing at 60 °C.
Collapse
|
31
|
Guidotti G, Soccio M, Gazzano M, Fusaro L, Boccafoschi F, Munari A, Lotti N. New thermoplastic elastomer triblock copolymer of PLLA for cardiovascular tissue engineering: Annealing as efficient tool to tailor the solid-state properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Han SH, Cha M, Jin YZ, Lee KM, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater 2020; 16:015019. [DOI: 10.1088/1748-605x/aba879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Chakraborty I, Hossain CM, Basak P. Synthesis and characterization of ester-diol based polyurethane: a potentiality check for hypopharyngeal tissue engineering application. Biomed Eng Lett 2020; 11:25-37. [PMID: 33747601 DOI: 10.1007/s13534-020-00180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022] Open
Abstract
Abstract Hypopharyngeal tissue engineering is increasing rapidly in this developing world. Tissue damage or loss needs the replacement by another biological or synthesized membrane using tissue engineering. Tissue engineering research is emerging to provide an effective solution for damaged tissue replacement. Polyurethane in tissue engineering has successfully been used to repair and restore the function of damaged tissues. In this context, Can polyurethane be a useful material to deal with hypopharyngeal tissue defects? To explore this, here ester diol based polyurethane (PU) was synthesized in two steps: firstly, polyethylene glycol 400 (PEG 400) was reacted with lactic acid to prepare ester diol, and then it was polymerized with hexamethylene diisocyanate. The physical, mechanical, and biological testing was done to testify the characterization of the membrane. The morphology of the synthesized membrane was investigated by using field emission scanning electron microscopy. Functional groups of the obtained membrane were characterized by fourier transform infrared spectroscopy spectroscopy. Several tests were performed to check the in vitro and in vivo biocompatibility of the membrane. A highly connected homogeneous network was obtained due to the appropriate orientation of a hard segment and soft segment in the synthesized membrane. Mechanical property analysis indicates the membrane has a strength of 5.15 MPa and strain 124%. The membrane showed high hemocompatibility, no cytotoxicity on peripheral blood mononuclear cell, and susceptible to degradation in simulated body fluid solution. Antimicrobial activity assessment has shown promising results against clinically significant bacteria. Primary hypopharyngeal cell growth on the PU membrane revealed the cytocompatibility and subcutaneous implantation on the back of Wistar rats were given in vivo biocompatibility of the membrane. Therefore, the synthesized material can be considered as a potential candidate for a hypopharyngeal tissue engineering application. Graphic abstract
Collapse
Affiliation(s)
- Imon Chakraborty
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | | | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
34
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
36
|
Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review. Int J Biol Macromol 2020; 161:550-560. [PMID: 32534089 DOI: 10.1016/j.ijbiomac.2020.06.075] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
This review provides a report on cross-linking methods used for collagen modifications. Collagen materials have attracted significant academic interest due to its biological properties in native state. However, in many cases the mechanical properties and degradation rate should be tailored to especial biomedical and cosmetic applications. In the proposed review paper, the structure, preparation, and properties of several collagen based materials have been discussed in general, and detailed examples of collagen cross-linking methods have been drawn from scientific literature and practical work. Both, physical and chemical methods of improvement of collagenous materials have been reviewed. In the review paper the cross-linking with glutaraldehyde, genipin, EDC-NHS, dialdehyde starch, chitosan, temperature, UV light and enzyme has been discussed. A critical comparison of currently available cross-linking methods has been shown.
Collapse
Affiliation(s)
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomaterials and Cosmetics Chemistry, Gagarin 7 street, 87-100 Torun, Poland.
| |
Collapse
|
37
|
Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 2020; 156:430-437. [PMID: 32294496 DOI: 10.1016/j.ijbiomac.2020.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
In recent years, plant based scaffold due to its inherent properties such as mechanical stability, renewability, easy mass production, inexpensiveness, biocompatibility and biodegradability with low toxic effects have received much attention in the field of bone tissue engineering. Design of good tissue compatible plant based polymer scaffold plays a vital role in biomedicine, nanomedicine and in various tissue engineering applications. The present study focused on the fabrication of a novel herbal scaffold using the medicinal plants Spinacia oleracea (SO) and Cissus quadrangularis (CQ) extracts incorporated with Alginate (Alg), Carboxy Methyl Cellulose (CMC) by lyophilization method. The structural nature and the properties of prepared scaffold were analyzed by XRD, FE-SEM, FTIR, EDAX, TGA, swelling ratio, porosity, in-vitro degradation and cell viability studies. The biocompatible nature of the plant based polymer scaffold was assessed using MG-63 Human Osteosarcoma cell line. The investigation of biocompatibility study showed that Alg/CMC/SO scaffold expressed higher cell viability than Alg/CMC/SO-CQ scaffold, which possess better cellular biocompatibility. The results of the present study suggested that plant based Alg/CMC/SO scaffold serve as a potential biopolymer scaffold which could be further exploited for bone tissue applications.
Collapse
Affiliation(s)
- Govindasamy Sharmila
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India.
| | - Chandrasekaran Muthukumaran
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Shanmugam Kirthika
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Sundarapandian Keerthana
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Narasimhan Manoj Kumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Jeyadharmarajan Jeyanthi
- Department of Civil Engineering, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| |
Collapse
|
38
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
39
|
Grogan SP, Dorthé EW, Glembotski NE, Gaul F, D'Lima DD. Cartilage tissue engineering combining microspheroid building blocks and microneedle arrays. Connect Tissue Res 2020; 61:229-243. [PMID: 31134817 DOI: 10.1080/03008207.2019.1617280] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Scaffold-free cartilage tissue engineering circumvents issues with scaffold seeding, potential toxicity response, and impaired host integration. However, precisely controlling and maintaining a scaffold-free construct shape have been challenging. We explored the feasibility of microneedle arrays to print tissue using cellular microspheroids as building blocks.Materials and Methods: Human embryonic-derived mesenchymal stem cells or infrapatellar fat pad mesenchymal stem cells were used to create microspheroids of 500 µm in diameter, which were assembled on microneedle arrays in a predefined arrangement using a robotic system under computer vision. Microspheroids on microneedles were cultured to permit fusion into a tissue construct. Infrapatellar fat pad mesenchymal stem cell constructs were either implanted into chondral defects created in human osteoarthritic cartilage explants or maintained on the microneedle array for 3 weeks. Embryonic-derived mesenchymal stem cell constructs were designed to be press-fit into 3 mm subchondral defects in New Zealand White rabbits and maintained for up to 8 weeks to assess retention, early tissue repair, and more mature cartilage regeneration.Results: Microspheroids of both cell types fused together in culture to form neotissues of predefined shape and size. Infrapatellar fat pad mesenchymal stem cell neotissues expressed high levels of chondrogenic genes and integrated with the surrounding osteoarthritic host cartilage. Embryonic-derived mesenchymal stem cell constructs generated chondrogenic neotissue in vivo as early as 2 weeks and more mature tissue by 8 weeks with increased glycosaminoglycan deposition.Conclusions: We constructed defined scaffold-free shapes by bioprinting and fusing microspheroids. Proof of concept was shown in the repair of ex vivo osteoarthritic human cartilage and in vivo rabbit osteochondral (OC) defects.
Collapse
Affiliation(s)
- Shawn P Grogan
- Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Erik W Dorthé
- Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Nicholas E Glembotski
- Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Florian Gaul
- Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA.,Department of Orthopedic, Trauma and Plastic Surgery, Spine Center, University Hospital Leipzig, Leipzig, Germany
| | - Darryl D D'Lima
- Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| |
Collapse
|
40
|
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, Kaplan DL, Moroni L, Joghataei MT. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:202-224. [PMID: 30648478 DOI: 10.1089/ten.teb.2018.0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPACT STATEMENT Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Ebrahim Esfandiari
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafieinia
- 2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Taheri-Kafrani
- 5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Samadikuchaksaraei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - David L Kaplan
- 7 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Moroni
- 3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands.,8 CNR Nanotec-Institute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, Lecce, Italy
| | - Mohammad T Joghataei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
41
|
Mania S, Partyka K, Pilch J, Augustin E, Cieślik M, Ryl J, Jinn JR, Wang YJ, Michałowska A, Tylingo R. Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO 2 Saturation. Molecules 2019; 24:molecules24244532. [PMID: 31835739 PMCID: PMC6943705 DOI: 10.3390/molecules24244532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
A new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling capacity, solubility), and biological (antimicrobial and cytotoxic) properties. Chitosan in the composites was a component for obtaining their foamed form with 7.4 to 22.7 times lower density compared to the neat PLA and high porosity also confirmed by the SEM. The foams had a hardness in the range of 70-440 kPa. The FT-IR analysis confirmed no new chemical bonds between the sponge ingredients. Other results showed low sorption capacity (2.5-7.2 g/g) and solubility of materials (less than 0.2%). The obtained foams had the lower Tg value and improved ability of crystallization compared to neat PLA. The addition of chitosan provides the bacteriostatic and bactericidal properties against Escherichia coli and Staphylococcus aureus. Biocompatibility studies have shown that the materials obtained are not cytotoxic to the L929 cell line.
Collapse
Affiliation(s)
- Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland;
- Correspondence: ; Tel.: +48-58-347-28-56
| | | | - Joanna Pilch
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland; (J.P.); (E.A.)
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland; (J.P.); (E.A.)
| | - Mateusz Cieślik
- Department of Electrochemistry, Corrosion and Material Engineering, Faculty of Chemistry, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland; (M.C.); (J.R.)
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Material Engineering, Faculty of Chemistry, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland; (M.C.); (J.R.)
| | - Jia-Rong Jinn
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (J.-R.J.); (Y.-J.W.)
| | - Ya-Jane Wang
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (J.-R.J.); (Y.-J.W.)
| | - Anna Michałowska
- AGC Biologics, Vandtårnsvej 83B, 2860 Søborg, Copenhagen, Denmark;
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdansk, Poland;
| |
Collapse
|
42
|
Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. MICROMACHINES 2019; 10:E765. [PMID: 31717955 PMCID: PMC6915415 DOI: 10.3390/mi10110765] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Chitosan is a unique natural resourced polysaccharide derived from chitin with special biocompatibility, biodegradability, and antimicrobial activity. During the past three decades, chitosan has gradually become an excellent candidate for various biomedical applications with prominent characteristics. Chitosan molecules can be chemically modified, adapting to all kinds of cells in the body, and endowed with specific biochemical and physiological functions. In this review, the intrinsic/extrinsic properties of chitosan molecules in skin, bone, cartilage, liver tissue repair, and organ three-dimensional (3D) bioprinting have been outlined. Several successful models for large scale-up vascularized and innervated organ 3D bioprinting have been demonstrated. Challenges and perspectives in future complex organ 3D bioprinting areas have been analyzed.
Collapse
Affiliation(s)
- Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019; 25:687-700. [PMID: 31017039 PMCID: PMC6859695 DOI: 10.1089/ten.tec.2018.0379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
A great variety of natural and synthetic polymer materials have been utilized in soft tissue engineering as extracellular matrix (ECM) materials. Natural polymers, such as collagen and fibrin hydrogels, have experienced especially broad adoption due to the high density of cell adhesion sites compared to their synthetic counterparts, ready availability, and ease of use. However, these and other hydrogels lack the structural and mechanical anisotropy that define the ECM in many tissues, such as skeletal and cardiac muscle, tendon, and cartilage. Herein, we present a facile, low-cost, and automated method of preparing collagen microfibers, organizing these fibers into precisely controlled mesh designs, and embedding these meshes in a bulk hydrogel, creating a composite biomaterial suitable for a wide variety of tissue engineering and regenerative medicine applications. With the assistance of custom software tools described herein, mesh patterns are designed by a digital graphical user interface and translated into protocols that are executed by a custom mesh collection and organization device. We demonstrate a high degree of precision and reproducibility in both fiber and mesh fabrication, evaluate single fiber mechanical properties, and provide evidence of collagen self-assembly in the microfibers under standard cell culture conditions. This work offers a powerful, flexible platform for the study of tissue engineering and cell material interactions, as well as the development of therapeutic biomaterials in the form of custom collagen microfiber patterns that will be accessible to all through the methods and techniques described here. Impact Statement Collagen microfiber meshes have immediate and broad applications in tissue engineering research and show high potential for later use in clinical therapeutics due to their compositional similarities to native extracellular matrix and tunable structural and mechanical characteristics. Physical and biological characterizations of these meshes demonstrate physiologically relevant mechanical properties, native-like collagen structure, and cytocompatibility. The methods presented herein not only describe a process through which custom collagen microfiber meshes can be fabricated but also provide the reader with detailed device plans and software tools to produce their own bespoke meshes through a precise, consistent, and automated process.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Jessica A Bellows
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
44
|
3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019; 9:E470. [PMID: 31509976 PMCID: PMC6770583 DOI: 10.3390/biom9090470] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.
Collapse
Affiliation(s)
- Bolat Sultankulov
- Department of Chemical Engineering, School of Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Berillo
- Water Technology Center (WATEC) Department of Bioscience - Microbiology, Aarhus University, Aarhus 8000, Denmark
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Tursonjan Tokay
- School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
46
|
Qu P, Qi J, Han Y, Zhou L, Xie D, Song H, Geng C, Zhang K, Wang G. Effects of Rolling-Sliding Mechanical Stimulation on Cartilage Preserved In Vitro. Cell Mol Bioeng 2019; 12:301-310. [PMID: 31719916 DOI: 10.1007/s12195-019-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Mechanical stimulation is important for maintaining cartilage function. We used a loading device to exert rolling-sliding mechanical stimulation on cartilage preserved in vitro to investigate cartilage viability and the involved mechanisms. Methods Osteochondral grafts from pig knees were randomly classified into loading and control groups. The loading group cartilage was subjected to cycles of mechanical stimulation with specified frequency/time/pressure combinations every 3 days; Then the DMEM was refreshed, and the cartilage was preserved in vitro. The control group cartilage was preserved in DMEM throughout the process and was changed every 3 days. On days 14 and 28, the chondrocyte survival rate, histology, and Young's modulus of the cartilage were measured. Western blots were performed after 2 h of loading to evaluate the protein expression. Results The loading group showed a significantly higher chondrocyte survival rate, proteoglycan and type II collagen content, and Young's modulus than did the control group on day 14, but no statistically significant differences were found on day 28. After two hours of the loading, the phosphorylation levels of MEK and ERK1/2 increased, and the expression of caspase-3, cleaved caspase-3 and bax decreased. Conclusion These results suggest that periodic rolling-sliding mechanical stimulation can increase cartilage vitality in 2 weeks; a possible mechanism is that mechanical stimulation activates the MEK/ERK signalling pathway, thus inhibiting apoptotic protein expression. This loading preservation scheme could be used by cartilage tissue banks to improve cartilage preservation in vitro and enhance the quality of cartilage repair.
Collapse
Affiliation(s)
- Pengwei Qu
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Jianhong Qi
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Yunning Han
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Lu Zhou
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Di Xie
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Hongqiang Song
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Caiyun Geng
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Kaihong Zhang
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Guozhu Wang
- College of Radiology, Shandong First Medical University&Shandong Academy of Medical Science, Taian, 271016 Shandong China
| |
Collapse
|
47
|
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1509-1522. [DOI: 10.1016/j.msec.2019.02.070] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/09/2023]
|
48
|
Moon H, Choy S, Park Y, Jung YM, Koo JM, Hwang DS. Different Molecular Interaction between Collagen and α- or β-Chitin in Mechanically Improved Electrospun Composite. Mar Drugs 2019; 17:md17060318. [PMID: 31151236 PMCID: PMC6628339 DOI: 10.3390/md17060318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/19/2023] Open
Abstract
Although collagens from vertebrates are mainly used in regenerative medicine, the most elusive issue in the collagen-based biomedical scaffolds is its insufficient mechanical strength. To solve this problem, electrospun collagen composites with chitins were prepared and molecular interactions which are the cause of the mechanical improvement in the composites were investigated by two-dimensional correlation spectroscopy (2DCOS). The electrospun collagen is composed of two kinds of polymorphs, α- and β-chitin, showing different mechanical enhancement and molecular interactions due to different inherent configurations in the crystal structure, resulting in solvent and polymer susceptibility. The collagen/α-chitin has two distinctive phases in the composite, but β-chitin composite has a relatively homogeneous phase. The β-chitin composite showed better tensile strength with ~41% and ~14% higher strength compared to collagen and α-chitin composites, respectively, due to a favorable secondary interaction, i.e., inter- rather than intra-molecular hydrogen bonds. The revealed molecular interaction indicates that β-chitin prefers to form inter-molecular hydrogen bonds with collagen by rearranging their uncrumpled crystalline regions, unlike α-chitin.
Collapse
Affiliation(s)
- Hyunwoo Moon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| | - Seunghwan Choy
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | - Jun Mo Koo
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Korea.
| |
Collapse
|
49
|
Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 2019; 134:673-694. [PMID: 31054302 DOI: 10.1016/j.ijbiomac.2019.04.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type of damages is one of the most important health problems with an increasing incidence worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor organs, as well as immunological problems. In this context, tissue engineering (TE) was introduced as a novel and versatile approach for restoring tissue/organ function using living cells, scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) support material, provide physical and chemical cues for seeding cells and has an essential role in cell missions. Among the wide verity of scaffolding materials, natural or synthetic biopolymers are the most commonly biomaterials mainly due to their unique physicochemical and biological features. In this context, naturally occurring biological macromolecules are particular of interest owing to their low immunogenicity, excellent biocompatibility and cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding applications. In this review, we highlighted the potentials of natural and synthetic polymers as scaffolding materials. The properties, advantages, and disadvantages of both polymer types as well as the current status, challenges, and recent progresses regarding the application of them as scaffolding biomaterials are also discussed.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|