1
|
Romero-Castillo I, López-Ruiz E, Fernández-Sánchez JF, Marchal JA, Gómez-Morales J. Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2020; 21:e2000319. [PMID: 33369064 DOI: 10.1002/mabi.202000319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Indexed: 11/10/2022]
Abstract
This work explores in depth the simultaneous self-assembly and mineralization of type I collagen by a base-acid neutralization technique to prepare biomimetic collagen-apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are tested: base-acid titration, a solution of Ca(OH)2 is added dropwise to a stirred solution containing type I collagen dispersed in H3 PO4 ; and direct mixing, the Ca(OH)2 solution is added by fast dripping onto the acidic solution. Only the direct mixing variant yielded an effective control of calcium phosphate polymorphism. Luminescence spectroscopy reveals the long luminescence lifetime and high relative luminescence intensity of the Tb3+ -doped materials, while two-photon confocal fluorescence microscopy shows the characteristic green fluorescence light when using excitation wavelength of 458 nm, which is not harmful to bone tissue. Cytotoxicity/viability tests reveal that direct mixing samples show higher cell proliferation than titration samples. Additionally, osteogenic differentiation essays show that all mineralized fibrils promote the osteogenic differentiation, but the effect is more pronounced when using samples prepared by direct mixing, and more notably when using the Tb3+ -doped mineralized fibrils. Based on these findings it is concluded that the new nanocomposite is an ideal candidate for bone regenerative therapy.
Collapse
Affiliation(s)
- Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| | - Elena López-Ruiz
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain.,Department of Health Science, Faculty of Experimental Science, University of Jaén, Jaén, E-23071, Spain
| | | | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, Granada, E-18014, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, Granada, E-18071, Spain
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras, no. 4, Armilla, Granada, E-18100, Spain
| |
Collapse
|
2
|
Oh S, Nguyen QD, Chung KH, Lee H. Bundling of Collagen Fibrils Using Sodium Sulfate for Biomimetic Cell Culturing. ACS OMEGA 2020; 5:3444-3452. [PMID: 32118158 PMCID: PMC7045499 DOI: 10.1021/acsomega.9b03704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Collagen is the most abundant extracellular matrix protein. The concentrations, structural arrangement, and directionality of collagen depend on the type of tissue. Thick fibril bundles of collagen are observed in most collagenous tissues, including connective tissues, bones, and tendons, indicating that they play a critical role in many cell functions. In this study, we developed a new method to regulate collagen bundling without altering the protein concentration, temperature, or pH by using sodium sulfate to replicate bundled collagen fibrils found in vivo. Microstructure analysis revealed that both the thickness of the fibril bundles and the pore size of the matrix increased with the amount of sodium sulfate. In contrast, there was no significant change in the bulk mechanical stiffness of the collagen matrix. The modified collagen bundle matrix was used to investigate the responses of human cervical cancer cells by mimicking the extracellular environments of a tumor. Compared to the normal collagen matrix, cells on the collagen bundle matrix exhibited significant changes in morphology, with a reduced cell perimeter and aspect ratio. The cell motility, which was analyzed in terms of the speed of migration and mean squared displacement, decreased for the collagen bundle matrix. Additionally, the critical time taken for the peak turning angle to converge to 90° decreased, indicating that the migration direction was regulated by geometric cues provided by collagen bundles rather than by the intrinsic cell persistence. The experimental results imply that collagen bundles play an important role in determining the magnitude and direction in cancer cell migration. The proposed method of extracellular matrix modification can be applied to investigate various cellular behaviors in both physiological and pathological environments.
Collapse
Affiliation(s)
- Seunghee Oh
- School of Mechanical
Engineering, Yonsei University, Seoul 03722, South Korea
- Global Technology Center, Samsung
Electronics, Co., Ltd., Suwon 16677, South Korea
| | - Quang Dang Nguyen
- School of Mechanical Engineering, University of Ulsan, Ulsan 44610, South
Korea
| | - Koo-Hyun Chung
- School of Mechanical Engineering, University of Ulsan, Ulsan 44610, South
Korea
| | - Hyungsuk Lee
- School of Mechanical
Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
3
|
Portier F, Teulon C, Nowacka-Perrin A, Guenneau F, Schanne-Klein MC, Mosser G. Stabilization of Collagen Fibrils by Gelatin Addition: A Study of Collagen/Gelatin Dense Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12916-12925. [PMID: 29087724 DOI: 10.1021/acs.langmuir.7b02142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collagen and its denatured form, gelatin, are biopolymers of fundamental interest in numerous fields ranging from living tissues to biomaterials, food, and cosmetics. This study aims at characterizing mixtures of those biopolymers at high concentrations (up to 100 mg·mL-1) at which collagen has mesogenic properties. We use a structural approach combining polarization-resolved multiphoton microscopy, polarized light microscopy, magnetic resonance imaging, and transmission electron microscopy to analyze gelatin and collagen/gelatin dense phases in their sol and gel states from the macroscopic to the microscopic scale. We first report the formation of a lyotropic crystal phase of gelatin A and show that gelatin must structure itself in particles to become mesogenic. We demonstrate that mixtures of collagen and gelatin phase segregate, preserving the setting of the pure collagen mesophase at a gelatin ratio of up to 20% and generating a biphasic fractal sample at all tested ratios. Moreover, differential scanning calorimetric analysis shows that each protein separates into two populations. Both populations of gelatins are stabilized by the presence of collagen, whereas only one population of collagen molecules is stabilized by the presence of gelatin, most probably those at the interface of the fibrillated microdomains and of the gelatin phase. Although further studies are needed to fully understand the involved mechanism, these new data should have a direct impact on the bioengineering of those two biopolymers.
Collapse
Affiliation(s)
- François Portier
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, LCMCP , F-75005 Paris, France
| | - Claire Teulon
- LOB, Ecole Polytechnique, CNRS, Inserm U1182, Université Paris-Saclay , F-91128 Palaiseau, France
| | - Agnieszka Nowacka-Perrin
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, LCMCP , F-75005 Paris, France
| | - Flavien Guenneau
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, LCMCP , F-75005 Paris, France
| | | | - Gervaise Mosser
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, LCMCP , F-75005 Paris, France
| |
Collapse
|
4
|
Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B 2016; 4:6484-6496. [PMID: 27928505 PMCID: PMC5123637 DOI: 10.1039/c6tb00807k] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/20/2016] [Indexed: 12/28/2022]
Abstract
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan , 2350 Hayward Ave , Ann Arbor , MI 48109 , USA
| | - S M Best
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| | - R E Cameron
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| |
Collapse
|
5
|
Bou S, Ellis AV, Ebara M. Synthetic stimuli-responsive 'smart' fibers. Curr Opin Biotechnol 2016; 39:113-119. [PMID: 27017142 DOI: 10.1016/j.copbio.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Simon Bou
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Biomaterials Unit, International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, Japan
| | - Amanda V Ellis
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Mitsuhiro Ebara
- Biomaterials Unit, International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, Japan; Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|