1
|
Oladipo AO, Unuofin JO, Lebelo SL, Msagati TAM. Phytochemical-Stabilized Platinum-Decorated Silver Nanocubes INHIBIT Adenocarcinoma Cells and Enhance Antioxidant Effects by Promoting Apoptosis via Cell Cycle Arrest. Pharmaceutics 2022; 14:pharmaceutics14112541. [PMID: 36432732 PMCID: PMC9693179 DOI: 10.3390/pharmaceutics14112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: The increasing use of silver and platinum bimetallic nanoparticles in the diagnosis and treatment of cancer presents significant advances in biomedical applications due to their extraordinary physicochemical properties. This study investigated the role of aqueous phytochemical extract in stabilizing platinum nanodots-decorated silver nanocubes (w-Pt@AgNPs) for enhancing antioxidant activities and their mechanism. (2) Methods: UV-Vis, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM) were used to characterize the formed w-Pt@AgNPs. LC-QToF-MS/MS was used to analyze the bioactive compounds, while DPPH, ABTS, and FRAP were used to detect the scavenging potential. Flow cytometric assays were performed to investigate the cytotoxicity and the mechanism of cell death. (3) Results: Morphological studies indicated that w-Pt@AgNPs were cube in shape, decorated by platinum nanodots on the surfaces. Compared to ethanolic extract-synthesized e-Pt@AgNPs, w-Pt@AgNPs exhibited the strongest antioxidant and cytotoxic activity, as data from Annexin V and Dead cell labeling indicated higher induction of apoptosis. Despite the high proportion of early apoptotic cells, the w-Pt@AgNPs triggered a decrease in G1/G0 cell cycle phase distribution, thereby initiating a G2/M arrest. (4) Conclusions: By enhancing the antioxidant properties and promoting apoptosis, w-Pt@AgNPs exhibited remarkable potential for improved cancer therapy outcomes.
Collapse
Affiliation(s)
- Adewale Odunayo Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, Johannesburg 1710, South Africa
- Correspondence:
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, Johannesburg 1710, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, Johannesburg 1710, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
2
|
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917:174751. [PMID: 35021110 DOI: 10.1016/j.ejphar.2022.174751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is preventable yet one of the most prevalent cancers among women around the globe. Though regular screening has resulted in the decline in incidence, the disease claims a high number of lives every year, especially in the developing countries. Owing to rather aggressive and non-specific nature of the conventional chemotherapeutics, there is a growing need for newer treatment modalities. The advent of nanotechnology has assisted in this through the use of nanocarriers for targeted drug delivery. A number of nanocarriers are continuously being developed and studied for their application in drug delivery. The present review summarises the different drug delivery approaches and nanocarriers that can be useful, their advantages and limitation.
Collapse
Affiliation(s)
- Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Chen R, Chen F, Sun M, Zhang R, Wu S, Meng C. Controllable synthesis and antioxidant activity of gold nanoparticles using chlorogenic acid. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rong Chen
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| | - Fenghe Chen
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| | - Mengyang Sun
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| | - Renyu Zhang
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| | - Songshuai Wu
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| | - Chuangang Meng
- College of Pharmacy, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
4
|
Thakur PK, Verma V. A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. Appl Biochem Biotechnol 2021; 193:2357-2378. [PMID: 34114200 DOI: 10.1007/s12010-021-03598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cancer is one of the leading causes of death worldwide and also the main obstacle of accelerating anticipation. It is globally recognized as overwhelmingly challenging in terms of clinical management. Cancer is taken into account because a prime lethal disease affects different organs of the body. Even with the rapid improvements in the medical sciences, there are no proper medicines to treat specific kinds of cancer. One of the fundamental issues within the malignant growth treatment is the side effect because of conventional treatment systems. Nanotechnology might be an extremely encouraging field for the therapeutic and drug areas; thus, it assumes a crucial part in improving humankind's satisfaction. In the infield of nanotechnology, a plant-mediated fusion of metal nanoparticles has been developed as a substitute to defeat the limitations of traditional synthesis approaches similar to physical and synthetic strategies. These tunable properties of nanomaterials make them progressed apparatuses in the biomedical platform particularly for the improvement of new diagnostics and focused on therapeutics for malignancy.This review incorporates the characterization of nanoparticles with size and shape and features critical uses of biosynthesized green nanomaterials in cancer theranostics.
Collapse
Affiliation(s)
- Piyush Kumar Thakur
- Faculty of Science and Technology, ICFAI University, Raipur, Chhattisgarh, 492001, India.
| | - Varsha Verma
- School of Sciences, MATS University, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
5
|
Chaturvedi VK, Yadav N, Rai NK, Bohara RA, Rai SN, Aleya L, Singh MP. Two birds with one stone: oyster mushroom mediated bimetallic Au-Pt nanoparticles for agro-waste management and anticancer activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13761-13775. [PMID: 33196993 DOI: 10.1007/s11356-020-11435-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Agriculture has the most significant contribution in fulfilling the basic human need, sustaining life, and strengthening the economy of any country. To feed the exploding population of the world, there has been a quantum jump in the production of agricultural commodities, which has led to the production of a substantial considerable quantity of agricultural and agro-industrial wastes. The bulks of these wastes are lignocellulosic in nature and consist of three main polymeric constituents, i.e., cellulose, hemicellulose, and lignin, which are recalcitrant. The primary significant portions of these remain unutilized and are burnt in the field, leading to severe environmental aggression and wastage of resource. Farmers across the globe, including India, burn these agricultural wastes in their thousands of acre land, which contribute to spoiling the air quality index (AQI). This is very harmful, especially to children, pregnant women, old adults, and for patients suffering from respiratory diseases. The current manuscript sets up an agro-waste management platform by using paddy straw as a substrate for the production of nutritionally and medically rich oyster mushroom, Pleurotus florida (Pf) and which is further used in the green synthesis of bimetallic (gold-platinum) Au-Pt nanoparticle. Yield performance and biological efficiency of Pf were calculated from the degraded paddy straw. The green synthesized Au-Pt NPs were structurally characterized by ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential analysis. The prepared NPs showed a face-centered cubic crystal structure, icosahedral shape with a mean particle size of 16 nm. Furthermore, we examined the cytotoxic activity of Au-Pt NPs using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, intracellular reactive oxygen species (ROS) generation, and apoptosis by propidium iodide assay. We found that Au-Pt NPs exerted apoptotic activity on the human colon cancer cell line (HCT 116) in a dose-dependent manner from 12.5 to 200 μg/mL. Overall, our findings create a prototype and open a new door to synthesizing functional nanoparticle by using oyster mushroom as the substrate for paddy straw agro-waste management and the applicability of Pf in the synthesis of eco-friendly Au-Pt NPs. This is the first kind of approach that kills two birds with one stone.
Collapse
Affiliation(s)
- Vivek K Chaturvedi
- Centre of Biotechnology, Institute of Interdisciplinary Sciences (IIDS), University of Allahabad, Prayagraj, 211002, India
| | - Navneet Yadav
- Department of Physics, University of Allahabad, Prayagraj, 211002, India
| | - Neeraj K Rai
- Department of Biotechnology, Central University of South Bihar, Gaya, 824236, India
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
- Centre for Interdisciplinary Research, D.Y. Patil University, Kolhapur, India.
| | - Sachchida Nand Rai
- Centre of Biotechnology, Institute of Interdisciplinary Sciences (IIDS), University of Allahabad, Prayagraj, 211002, India
| | | | - Mohan P Singh
- Centre of Biotechnology, Institute of Interdisciplinary Sciences (IIDS), University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
6
|
González-Larraza PG, López-Goerne TM, Padilla-Godínez FJ, González-López MA, Hamdan-Partida A, Gómez E. IC 50 Evaluation of Platinum Nanocatalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines. ACS OMEGA 2020; 5:25381-25389. [PMID: 33043218 PMCID: PMC7542800 DOI: 10.1021/acsomega.0c03759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 05/27/2023]
Abstract
Cancer is a major public health problem being one of the main causes of morbidity and mortality today. Recent advances in catalytic nanomedicine have offered new cancer therapies based on the administration of nanoparticles (NPs) of platinum (Pt) dispersed in catalytic mesoporous nanomaterials (titania, TiO2) with highly selective cytotoxic properties and no adverse effects. A half maximal inhibitory concentration (IC50) study was carried out in cancerous cell lines (HeLa, DU-145, and fibroblasts) to evaluate the cytotoxic effect of different nanomaterials [Pt/TiO2, TiO2, and Pt(acac)2] synthesized by the sol-gel method at concentrations 0-1000 μg/mL. The assays showed that IC50 values for Pt in functionalized TiO2 (NPt) in HeLa (53.74 ± 2.95 μg/mL) and DU-145 (75.07 ± 5.48 μg/mL) were lower than those of pure TiO2 (74.29 ± 8.95 and 82.02 ± 6.03 μg/mL, respectively). Pt(acac)2 exhibited no cytotoxicity. Normal cells (fibroblasts) treated with NPt exhibited no significant growth inhibition, suggesting the high selectivity of the compound for cancerous cells only. TiO2 and NPt were identified as antineoplastic compounds in vitro. Pt(acac)2 is not recommendable because of the low cytotoxicity observed.
Collapse
Affiliation(s)
- Pamela G. González-Larraza
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Tessy M. López-Goerne
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Francisco J. Padilla-Godínez
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, San Pedro Tlaquepaque, Jalisco 45604, Mexico
| | - Marco A. González-López
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Aida Hamdan-Partida
- Department of Health Care, Autonomous Metropolitan
University Xochimilco, Coyoacan, Mexico City 04960, Mexico
| | - Esteban Gómez
- AG Nanooptik, Humboldt-Universtät zu Berlin, Berlin 10117, Germany
| |
Collapse
|
7
|
Vijayakumar S, Vinayagam R, Anand MAV, Venkatachalam K, Saravanakumar K, Wang MH, Casimeer C S, KM G, David E. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Saravanan M, Barabadi H, Ramachandran B, Venkatraman G, Ponmurugan K. Emerging plant-based anti-cancer green nanomaterials in present scenario. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/bs.coac.2019.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Highlights in nanocarriers for the treatment against cervical cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:748-759. [PMID: 28866224 DOI: 10.1016/j.msec.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/16/2023]
Abstract
Cervical cancer is the second most common malignant tumor in women worldwide and has a high mortality rate, especially when it is associated with human papillomavirus (HPV). In US, an estimated 12,820 cases of invasive cervical cancer and an estimated 4210 deaths from this cancer will occur in 2017. With rare and very aggressive conventional treatments, one sees in the real need of new alternatives of therapy as the delivery of chemotherapeutic agents by nanocarriers using nanotechnology. This review covers different drug delivery systems applied in the treatment of cervical cancer, such as solid lipid nanoparticles (SNLs), liposomes, nanoemulsions and polymeric nanoparticles (PNPs). The main advantages of drug delivery thus improving pharmacological activity, improving solubility, bioavailability to bioavailability reducing toxicity in the target tissue by targeting of ligands, thus facilitating new innovative therapeutic technologies in a too much needed area. Among the main disadvantage is the still high cost of production of these nanocarriers. Therefore, the aim this paper is review the nanotechnology based drug delivery systems in the treatment of cervical cancer.
Collapse
|
13
|
Li X, Wu H, Ouyang X, Zhang B, Su X. New bioactive peptide reduces the toxicity of chemotherapy drugs and increases drug sensitivity. Oncol Rep 2017; 38:129-140. [PMID: 28560442 DOI: 10.3892/or.2017.5674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
Abstract
Anticancer bioactive peptide (ACBP) is extracted from normal goat spleens and exhibits antitumor activity alone and in combination with low cisplatin doses to achieve antitumor efficacy similar to higher cisplatin doses via sustained medication modes. In the present study, we investigated whether elevated levels of induced or normal ACBP in MKN‑45 gastric cancer (GC) cells may reduce their toxicity to oxaliplatin (L‑OHP) in a dose‑dependent manner. The growth inhibition rate (IR), morphological changes and gene expression were examined in MKN‑45 GC cells. Compared with normal ACBP, induced ACBP alone significantly enhanced the anticancer activity of L‑OHP‑mediated apoptosis and reduced the amount and side‑effects of L‑OHP (P<0.05). The inhibition of cancer cell growth at high concentrations of induced ACBP and L‑OHP was significantly more effective than at low concentrations. In addition, for the first time, we examined the potential of a combination of induced ACBP and L‑OHP to increase L‑OHP sensitivity in human gastric carcinoma xenograft tumors. Nude mice were implanted with human gastric carcinoma MKN‑45 cells and treated with an intraperitoneal injection of 0.5 ml of normal saline, 30 µg/ml ACBP, 20 µg/ml L‑OHP or 30 µg/ml ACBP + 20 µg/ml L‑OHP [combination of anticancer bioactive peptide and oxaliplatin (A+L)] via the tail vein twice a week. In vivo short‑term intermittent use of induced ACBP alone significantly inhibited MKN‑45 tumor growth. The combination of induced ACBP and L‑OHP also significantly improved the quality of life of the nude mice and reduced the toxicity of L‑OHP. Based on flow cytometry and gene expression analyses, A+L significantly increased the proportion of cells in the G2/M phase (P<0.05) relative to ACBP or L‑OHP alone, and short‑term intraperitoneal injection of ACBP increased the sensitizing effect of L‑OHP. Collectively, these results suggest that high levels of induced ACBP in combination with L‑OHP via a short‑term intermittent medication mode could be a useful clinical therapeutic strategy for GC.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Huijun Wu
- Department of Hepatobiliary Pancreatic Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Xiaohui Ouyang
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Bo Zhang
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
14
|
Extraction of ultrafine carbon nanoparticles from samooli Bread and evaluation of their in vitro cytotoxicity in human mesenchymal stem cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Athinarayanan J, Periasamy VS, A. Alshatwi A. Eco-friendly synthesis and characterization of platinum-copper alloy nanoparticles induce cell death in human cervical cancer cells. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Das RK, Brar SK, Verma M. Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives. Trends Biotechnol 2016; 34:440-449. [PMID: 26948438 DOI: 10.1016/j.tibtech.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022]
Abstract
Understanding the biocompatibility of metallic nanoparticles (MNPs) is pivotal for biomedical applications. The biocompatibility of plant-derived MNPs has been mostly attributed to capped plant molecules. This claim seems to be straightforward but lacks conclusive evidence. The capped phytochemicals and the metallic core might have decisive and individual roles in imparting the overall biocompatibility. Whether capped phytochemicals really make sense in diminishing the toxicity effect of the otherwise naked or metallic core needs further analysis. Here, we readdress the biocompatibility of plant-derived MNPs with references to contemporary cellular assays, different reactants for green synthesis, possible epigenetic involvement, and nanobiocompatibility at the molecular level. Finally, we discuss relevant in vivo studies and large-scale production issues.
Collapse
Affiliation(s)
- Ratul Kumar Das
- ETE Centre, INRS Université, 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Satinder Kaur Brar
- ETE Centre, INRS Université, 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, QC, G2C 1T9, Canada
| |
Collapse
|
17
|
Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3685671. [PMID: 27057273 PMCID: PMC4781993 DOI: 10.1155/2016/3685671] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/24/2016] [Indexed: 11/17/2022]
Abstract
Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.
Collapse
Affiliation(s)
- Pasupuleti Visweswara Rao
- Biotechnology Program, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
| | - Devi Nallappan
- Biotechnology Program, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Malaysia
| | - Kondeti Madhavi
- Department of Biochemistry, Sri Venkateswara Medical College, Tirupati, Andhra Pradesh 517502, India
| | - Shafiqur Rahman
- Department of Parasitology, Graduate School of Health Sciences, Kobe University, Kobe 654-0142, Japan
| | - Lim Jun Wei
- Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 32610 Tronoh, Malaysia
| | - Siew Hua Gan
- Human Genome Centre, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| |
Collapse
|