1
|
Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J, Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023; 28:485. [PMID: 36677545 PMCID: PMC9861437 DOI: 10.3390/molecules28020485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.
Collapse
Affiliation(s)
- Lalit Ranakoti
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Brijesh Gangil
- Mechanical Engineering Department, SOET, HNB Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Prabhakar Bhandari
- Mechanical Engineering Department, SOET, K. R. Mangalam University, Gurgaon 122103, Haryana, India
| | - Tej Singh
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jujhar Singh
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
2
|
Shim JW, Kim SS, Kim HK, Bae IH, Park DS, Park JK, Kim JU, Kim HB, Lee MY, Kim JS, Kim JH, Koo BS, Jeong KJ, Kim SU, Kim MC, Sim DS, Hong YJ, Ahn Y, Lim KS, Jeong MH. Effect of Novel Polymer-Free Nitrogen-Doped Titanium Dioxide Film-Coated Coronary Stent Loaded With Mycophenolic Acid. Front Bioeng Biotechnol 2021; 9:650408. [PMID: 34778222 PMCID: PMC8585759 DOI: 10.3389/fbioe.2021.650408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Titanium is commonly used in blood-exposed medical devices because it has superior blood compatibility. Mycophenolic acid inhibits the proliferation of vascular smooth muscle cells. This study examined the effect of a non-polymer TiO2 thin film–coated stent with mycophenolic acid in a porcine coronary overstretch restenosis model. Methods: Thirty coronary arteries in 15 pigs were randomized into three groups in which the coronary arteries were treated with a TiO2 film–coated stent with mycophenolic acid (NTM, n = 10), everolimus-eluting stent with biodegradable polymer (EES, n = 10), or TiO2 film–coated stent (NT, n = 10). A histopathologic analysis was performed 28 days after the stenting. Results: There were no significant intergroup differences in injury score, internal elastic lamina area, or inflammation score. Percent area stenosis was significantly smaller in the NTM and EES groups than in the NT group (36.1 ± 13.63% vs. 31.6 ± 7.74% vs. 45.5 ± 18.96%, respectively, p = 0.0003). Fibrin score was greater in the EES group than in the NTM and NT groups [2.0 (range, 2.0–2.0) vs. 1.0 (range, 1.0–1.75) vs. 1.0 (range, 1.0–1.0), respectively, p < 0.0001]. The in-stent occlusion rate measured by micro-computed tomography demonstrated similar percent area stenosis rates on histology analysis (36.1 ± 15.10% in NTM vs. 31.6 ± 8.89% in EES vs. 45.5 ± 17.26% in NT, p < 0.05). Conclusion: The NTM more effectively reduced neointima proliferation than the NT. Moreover, the inhibitory effect of NTM on smooth muscle cell proliferation was not inferior to that of the polymer-based EES with lower fibrin deposition in this porcine coronary restenosis model.
Collapse
Affiliation(s)
- Jae Won Shim
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Sung Soo Kim
- Division of Cardiology, Chosun University Hospital, Gwangju, South Korea
| | - Hyun Kuk Kim
- Division of Cardiology, Chosun University Hospital, Gwangju, South Korea
| | - In Ho Bae
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Dae Sung Park
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea.,Research Institute of Medical Sciences, Chonnam National University, Gwangju, South Korea
| | | | - Jae Un Kim
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Han Byul Kim
- Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Joong Sun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jung Ha Kim
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Bon-Sang Koo
- Futuristic Animal Resource and Research Center, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Kang-Jin Jeong
- Futuristic Animal Resource and Research Center, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Min Chul Kim
- Futuristic Animal Resource and Research Center, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Doo Sun Sim
- Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Young Joon Hong
- Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Youngkeun Ahn
- Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, South Korea
| | - Myung Ho Jeong
- Korea Cardiovascular Stent Research Institute, Jangsung, South Korea.,Cardiovascular Research Center, Chonnam National University Hospital, Gwangju, South Korea
| |
Collapse
|
3
|
Mauerhofer C, Grumet L, Schemmer P, Leber B, Stiegler P. Combating Ischemia-Reperfusion Injury with Micronutrients and Natural Compounds during Solid Organ Transplantation: Data of Clinical Trials and Lessons of Preclinical Findings. Int J Mol Sci 2021; 22:10675. [PMID: 34639016 PMCID: PMC8508760 DOI: 10.3390/ijms221910675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although extended donor criteria grafts bear a higher risk of complications such as graft dysfunction, the exceeding demand requires to extent the pool of potential donors. The risk of complications is highly associated with ischemia-reperfusion injury, a condition characterized by high loads of oxidative stress exceeding antioxidative defense mechanisms. The antioxidative properties, along with other beneficial effects like anti-inflammatory, antiapoptotic or antiarrhythmic effects of several micronutrients and natural compounds, have recently emerged increasing research interest resulting in various preclinical and clinical studies. Preclinical studies reported about ameliorated oxidative stress and inflammatory status, resulting in improved graft survival. Although the majority of clinical studies confirmed these results, reporting about improved recovery and superior organ function, others failed to do so. Yet, only a limited number of micronutrients and natural compounds have been investigated in a (large) clinical trial. Despite some ambiguous clinical results and modest clinical data availability, the vast majority of convincing animal and in vitro data, along with low cost and easy availability, encourage the conductance of future clinical trials. These should implement insights gained from animal data.
Collapse
Affiliation(s)
- Christina Mauerhofer
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Lukas Grumet
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Peter Schemmer
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Bettina Leber
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Philipp Stiegler
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| |
Collapse
|
4
|
Park JK, Kim SS, Kim HK, Nah JW, Kim HB, Bae IH, Park DS, Shim JW, Lee MY, Kim JS, Koo BS, Jeong KJ, Jin YB, Kim SU, Lee SR, Na JY, Sim DS, Hong YJ, Lim KS, Jeong MH. Poly-l-lactide Polymer-Based Triple Drug-Eluting Stent with Abciximab, Alpha-Lipoic Acid and Sirolimus in Porcine Coronary Restenosis Model. Macromol Res 2020. [DOI: 10.1007/s13233-020-8004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Covalent immobilization of fibroblast-derived matrix on metallic stent for expeditious re-endothelialization. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Yang Q, Wang J, Liu F, Ma W, Hu H, Ran C, Li F, Pan Q. A Novel Rabbit Model for Benign Biliary Stricture Formation and the Effects of Medication Infusions on Stricture Formation. Dig Dis Sci 2018; 63:2653-2661. [PMID: 29767392 DOI: 10.1007/s10620-018-5118-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Benign biliary stricture (BBS) is highly refractory. Currently, there is no effective strategy for prevention of BBS recurrence. The aim of this study is to establish a novel BBS rabbit model and to investigate the efficacy of biliary infusion with anti-proliferative medications for treating BBS. METHOD A BBS model was established via surgical injury and biliary infection. The biliary infusion tube was inserted into the common bile duct via the stump of cystic duct after cholecystectomy. Biliary infusions with Rapamycin, Pirfenidone and Fasudil were performed daily during the 4 weeks following the surgery. The wall thickness and luminal area of the bile duct were assessed. RESULTS All rabbits formed BBS after surgery. The mortality rate was 13% (8/60) and tube withdrawal rate was 4% (2/48). The thickness of the bile duct wall was significantly reduced; whereas the luminal area of the bile duct was dramatically enlarged in the Rapamycin or the Pirfenidone treated group, compared to the saline treated group. Furthermore, the local treatment significantly decreased the levels of proliferation makers, including PCNA, Collagen I and fibrogenic mediators, including ACTA2 and TGF-beta. CONCLUSION We have established a novel animal model for BBS formation. We have further demonstrated that biliary infusion with Rapamycin or Pirfenidone limits the biliary strictures through inhibiting the proliferation of the bile duct wall in this model. This may represent a new avenue for preventing biliary restenosis.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Junke Wang
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fei Liu
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wenjie Ma
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Haijie Hu
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Congdun Ran
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fuyu Li
- Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Exp Mol Med 2018; 50:1-14. [PMID: 30174328 PMCID: PMC6119684 DOI: 10.1038/s12276-018-0143-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic plaques within the vasculature may eventually lead to heart failure. Currently, cardiac stenting is the most effective and least invasive approach to treat this disease. However, in-stent restenosis is a complex chronic side effect of stenting treatment. This study used coronary stents coated with stem cells secreting angiogenic growth factors via an inducible genome-editing system to reduce stent restenosis and induce re-endothelialization within the artery. The characteristics of the cells and their adhesion properties on the stents were confirmed, and the stents were transplanted into a swine model to evaluate restenosis and the potential therapeutic use of stents with stem cells. Restenosis was evaluated using optical coherence tomography (OCT), microcomputed tomography (mCT) and angiography, and re-endothelialization was evaluated by immunostaining after cardiac stent treatment. Compared to a bare metal stent (BMS) or a parental umbilical cord blood-derived mesenchymal stem cell (UCB-MSC)-coated stent, the stents with stem cells capable of the controlled release of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) successfully reduced restenosis within the stent and induced natural re-endothelialization. Furthermore, UCB-MSCs exhibited the ability to differentiate into endothelial cells in Matrigel, and HGF and VEGF improved this differentiation. Our study indicates that stents coated with UCB-MSCs secreting VEGF/HGF reduce the restenosis side effects of cardiac stenting with improved re-endothelialization.
Collapse
|
8
|
Long-term preclinical evaluation of bioabsorbable polymer-coated drug-eluting stent in a porcine model. Macromol Res 2017. [DOI: 10.1007/s13233-017-5067-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|