1
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
2
|
Supphaprasitt W, Charoenmuang L, Thuaksuban N, Sangsuwan P, Leepong N, Supakanjanakanti D, Vongvatcharanon S, Suwanrat T, Srimanok W. A Three-Dimensional Printed Polycaprolactone–Biphasic-Calcium-Phosphate Scaffold Combined with Adipose-Derived Stem Cells Cultured in Xenogeneic Serum-Free Media for the Treatment of Bone Defects. J Funct Biomater 2022; 13:jfb13030093. [PMID: 35893462 PMCID: PMC9326540 DOI: 10.3390/jfb13030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy of a three-dimensional printed polycaprolactone–biphasic-calcium-phosphate scaffold (PCL–BCP TDP scaffold) seeded with adipose-derived stem cells (ADSCs), which were cultured in xenogeneic serum-free media (XSFM) to enhance bone formation, was assessed in vitro and in animal models. The ADSCs were isolated from the buccal fat tissue of six patients using enzymatic digestion and the plastic adherence method. The proliferation and osteogenic differentiation of the cells cultured in XSFM when seeded on the scaffolds were assessed and compared with those of cells cultured in a medium containing fetal bovine serum (FBS). The cell–scaffold constructs were cultured in XSFM and were implanted into calvarial defects in thirty-six Wistar rats to assess new bone regeneration. The proliferation and osteogenic differentiation of the cells in the XSFM medium were notably better than that of the cells in the FBS medium. However, the efficacy of the constructs in enhancing new bone formation in the calvarial defects of rats was not statistically different to that achieved using the scaffolds alone. In conclusion, the PCL–BCP TDP scaffolds were biocompatible and suitable for use as an osteoconductive framework. The XSFM medium could support the proliferation and differentiation of ADSCs in vitro. However, the cell–scaffold constructs had no benefit in the enhancement of new bone formation in animal models.
Collapse
Affiliation(s)
- Woraporn Supphaprasitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Lalita Charoenmuang
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
- Correspondence: ; Tel.: +66-954592492
| | - Prawichaya Sangsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai 90110, Thailand;
| | - Narit Leepong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Danaiya Supakanjanakanti
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Surapong Vongvatcharanon
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Trin Suwanrat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Woraluk Srimanok
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| |
Collapse
|
3
|
Amiri MA, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48:71-78. [PMID: 35491137 PMCID: PMC9065639 DOI: 10.5125/jkaoms.2022.48.2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Danesteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Alsahafi RA, Mitwalli HA, Balhaddad AA, Weir MD, Xu HHK, Melo MAS. Regenerating Craniofacial Dental Defects With Calcium Phosphate Cement Scaffolds: Current Status and Innovative Scope Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.743065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The management and treatment of dental and craniofacial injuries have continued to evolve throughout the last several decades. Limitations with autograft, allograft, and synthetics created the need for more advanced approaches in tissue engineering. Calcium phosphate cements (CPC) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. This review focuses on the up-to-date performance of calcium phosphate cement (CPC) scaffolds and upcoming promising dental and craniofacial bone regeneration strategies. First, we summarized the barriers encountered in CPC scaffold development. Second, we compiled the most up to date in vitro and in vivo literature. Then, we conducted a systematic search of scientific articles in MEDLINE and EMBASE to screen the related studies. Lastly, we revealed the current developments to effectively design CPC scaffolds and track the enhanced viability and therapeutic efficacy to overcome the current limitations and upcoming perspectives. Finally, we presented a timely and opportune review article focusing on the significant potential of CPC scaffolds for dental and craniofacial bone regeneration, which will be discussed thoroughly. CPC offers multiple capabilities that may be considered toward the oral defects, expecting a future outlook in nanotechnology design and performance.
Collapse
|
5
|
Influence of Mesenchymal Stem Cell Sources on Their Regenerative Capacities on Different Surfaces. Cells 2021; 10:cells10020481. [PMID: 33672328 PMCID: PMC7927066 DOI: 10.3390/cells10020481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Current gold-standard strategies for bone regeneration do not achieve the optimal recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells-such as mesenchymal stem cells (MSCs)-and bioactive ceramic scaffolds-such as calcium phosphate-based (CaPs) bioceramics-seem promising. The biological properties of MSCs are influenced by the tissue source. This study aims to define the optimal MSC source and construct (i.e., the MSC-CaP combination) for clinical application in bone regeneration. A previous iTRAQ analysis generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow, and dental pulp, then cultured both on a plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate), to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) presented the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs demonstrated the greatest capacity to colonise the bioceramics. Furthermore, the results demonstrated a trend that DPSCs had the most robust increase in ALP activity. Regarding CaPs, β-tricalcium phosphate obtained the best viability results, while hydroxyapatite had the highest ALP activity values. Therefore, we propose DPSCs as suitable MSCs for cell-based bone regeneration strategies.
Collapse
|
6
|
Cheng CH, Chen YW, Kai-Xing Lee A, Yao CH, Shie MY. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:78. [PMID: 31222566 DOI: 10.1007/s10856-019-6279-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
3D printing is a versatile technique widely applied in tissue engineering due to its ability to manufacture large quantities of scaffolds or constructs with various desired architectures. In this study, we demonstrated that poly (lactic acid) (PLA) scaffolds fabricated via fused deposition not only retained the original interconnected microporous architectures, the scaffolds also exhibited lower lactic acid dissolution as compared to the freeze-PLA scaffold. The 3D-printed scaffolds were then grafted with human bone morphogenetic protein-2 (BMP-2) via the actions of polydopamine (PDA) coatings. The loading and release rate of BMP-2 were monitored for a period of 35 days. Cellular behaviors and osteogenic activities of co-cultured human mesenchymal stem cells (hMSCs) were assessed to determine for efficacies of scaffolds. In addition, we demonstrated that our fabricated scaffolds were homogenously coated with PDA and well grafted with BMP-2 (219.1 ± 20.4 ng) when treated with 250 ng/mL of BMP-2 and 741.4 ± 127.3 ng when treated with 1000 ng/mL of BMP-2. This grafting enables BMP-2 to be released in a sustained profile. From the osteogenic assay, it was shown that the ALP activity and osteocalcin of hMSCs cultured on BMP-2/PDA/PLA were significantly higher when compared with PLA and PDA/PLA scaffolds. The methodology of PDA coating employed in this study can be used as a simple model to immobilize multiple growth factors onto different 3D-printed scaffold substrates. Therefore, there is potential for generation of scaffolds with different unique modifications with different capabilities in regulating physiochemical and biological properties for future applications in bone tissue engineering.
Collapse
Affiliation(s)
- Cheng-Hsin Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Department of Neurosurgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- 3D Printing Medical Research Institute, Asia University, Taichung, Taiwan
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- School of Dentistry, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|