1
|
Sun Y, Ma S, Shi Y, Chen M, Lan Y, Hu L, Yang X. Overcoming biological inertness: multifaceted strategies to optimize PEEK bioactivity for interdisciplinary clinical applications. Biomater Sci 2025. [PMID: 40314180 DOI: 10.1039/d4bm01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Polyether ether ketone (PEEK), characterized by a comparable elastic modulus to human bone with high wear resistance, radiolucency, and biocompatibility, demonstrates considerable promise for clinical applications. However, due to the significant limitations in clinical applications caused by the biological inertness of PEEK, it should first be modified to meet clinical needs. Currently, the field of PEEK modifications is rapidly advancing, with a particular emphasis on enhancing its biological properties. Most of the previous reviews have separately discussed strategies like antibacterial, osteogenic, and angiogenic enhancements for PEEK. This review combines cross-domain insights to update and synthesize recent research on PEEK composites, focusing on advanced multi-component sustained release platforms that mimic postoperative biological processes. Such temporal alignment between material functionality and physiological healing phases demonstrates unprecedented potential for expanding PEEK's clinical versatility.
Collapse
Affiliation(s)
- Yingjia Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Xiaofeng Yang
- Hangzhou City University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
2
|
Wang YR, Zhang XX, Chen XX, Yin XH, Yang M, Jiang K, Liu SC. Enhancement of Bone Repair in Diabetic Rats with Metformin-Modified Silicified Collagen Scaffolds. Adv Healthc Mater 2025; 14:e2401430. [PMID: 39177124 DOI: 10.1002/adhm.202401430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.
Collapse
Affiliation(s)
- Yi-Rong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiao-Xia Zhang
- Xi'an International University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xu-Xu Chen
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin-Hua Yin
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Ming Yang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Jiang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Chang Liu
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
3
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
4
|
Yang SY, Zhou YN, Yu XG, Fu ZY, Zhao CC, Hu Y, Lin KL, Xu YJ. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. J Nanobiotechnology 2024; 22:59. [PMID: 38347563 PMCID: PMC10863132 DOI: 10.1186/s12951-024-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-β (TGF-β) signaling pathway. CONCLUSION Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ge Yu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Fu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can-Can Zhao
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Wei Z, Zhang Z, Zhu W, Weng X. Polyetheretherketone development in bone tissue engineering and orthopedic surgery. Front Bioeng Biotechnol 2023; 11:1207277. [PMID: 37456732 PMCID: PMC10345210 DOI: 10.3389/fbioe.2023.1207277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely used in the medical field as an implant material, especially in bone tissue engineering and orthopedic surgery, in recent years. This material exhibits superior stability at high temperatures and is biosecured without harmful reactions. However, the chemical and biological inertness of PEEK still limits its applications. Recently, many approaches have been applied to improve its performance, including the modulation of physical morphology, chemical composition and antimicrobial agents, which advanced the osteointegration as well as antibacterial properties of PEEK materials. Based on the evolution of PEEK biomedical devices, many studies on the use of PEEK implants in spine surgery, joint surgery and trauma repair have been performed in the past few years, in most of which PEEK implants show better outcomes than traditional metal implants. This paper summarizes recent studies on the modification and application of biomedical PEEK materials, which provides further research directions for PEEK implants.
Collapse
Affiliation(s)
- Zhanqi Wei
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Zhu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Li Z, Li Y, Xu W, Yu J, Tong S, Zhang X, Ye X. 3D-printed polyether-ether-ketone/n-TiO 2 composite enhances the cytocompatibility and osteogenic differentiation of MC3T3-E1 cells by downregulating miR-154-5p. Open Med (Wars) 2023; 18:20230636. [PMID: 36760721 PMCID: PMC9885016 DOI: 10.1515/med-2023-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 01/30/2023] Open
Abstract
The object was to enhance the bioactivity of pure polyether-ether-ketone (PEEK) by incorporating nano-TiO2 (n-TiO2) and investigate its potential mechanism. PEEK/n-TiO2 composite was manufactured using a 3D PEEK printer and characterized by scanning electron microscopy (SEM), 3D profiler, energy-dispersive spectroscopy, and Fourier-transform infrared (FT-IR) analyses. Cytocompatibility was tested using SEM, fluorescence, and cell counting kit-8 assays. Osteogenic differentiation was evaluated by osteogenic gene and mineralized nodule levels. The expression of the candidate miRNAs were detected in composite group, and its role in osteogenic differentiation was studied. As a results the 3D-printed PEEK/n-TiO2 composite (Φ = 25 mm, H = 2 mm) was successfully fabricated, and the TiO2 nanoparticles were well distributed and retained the nanoscale size of the powder. The Ra value of the composite surface was 2.69 ± 0.29, and Ti accounted for 22.29 ± 12.09% (in weight), and FT-IR analysis confirmed the characteristic peaks of TiO2. The cells in the composite group possessed better proliferation and osteogenic differentiation abilities than those in the PEEK group. miR-154-5p expression was decreased in the composite group, and the inhibition of miR-154-5p significantly enhanced the proliferation and osteogenic differentiation abilities. In conclusion, 3D-printed PEEK/n-TiO2 composite enhanced cytocompatibility and osteogenic induction ability by downregulating miR-154-5p, which provides a promising solution for improving the osteointegration of PEEK.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Yifan Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 XianXia Road, Shanghai 200336, People’s Republic of China
| | - Jimin Yu
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, People’s Republic of China
| | - Shichao Tong
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Xiangyang Zhang
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Xiaojian Ye
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| |
Collapse
|
7
|
|