1
|
Hoxha A, Nikolaou A, Wilkinson HN, Hardman MJ, Gutierrez-Merino J, Felipe-Sotelo M, Carta D. Wound Healing Promotion via Release of Therapeutic Metallic Ions from Phosphate Glass Fibers: An In Vitro and Ex Vivo Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37669-37682. [PMID: 39010729 DOI: 10.1021/acsami.4c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Biomaterials capable of promoting wound healing and preventing infections remain in great demand to address the global unmet need for the treatment of chronic wounds. Phosphate-based glasses (PG) have shown potential as bioresorbable materials capable of inducing tissue regeneration, while being replaced by regenerated tissue and releasing therapeutic species. In this work, phosphate-glass-based fibers (PGF) in the system P2O5-CaO-Na2O added with 1, 2, 4, 6, and 10 mol % of the therapeutic metallic ions (TMI) Ag+, Zn2+, and Fe3+ were manufactured via electrospinning of coacervate gels. Coacervation is a sustainable, cost-effective, water-based method to produce PG. All TMI are effective in promoting wound closure (re-epithelialization) in living human skin ex vivo, where the best-performing system is PGF containing Ag+. In particular, PGF with ≥4 mol % of Ag+ is capable of promoting 84% wound closure over 48 h. These results are confirmed by scratch test migration assays, with the PGF-Ag systems containing ≥6 mol % of Ag+, demonstrating significant wound closure enhancement (up to 72%) after 24 h. The PGF-Ag systems are also the most effective in terms of antibacterial activity against both the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli. PGF doped with Zn2+ shows antibacterial activity only against S. aureus in the systems containing Zn2+ ≥ 10 mol %. In addition, PGF doped with Fe3+ rapidly accelerates ex vivo healing in patient chronic wound skin (>30% in 48 h), demonstrating the utility of doped PGF as a potential therapeutic strategy to treat chronic wounds.
Collapse
Affiliation(s)
- Agron Hoxha
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Athanasios Nikolaou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, U.K
| | - Holly N Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | - Matthew J Hardman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | | | - Monica Felipe-Sotelo
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Daniela Carta
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
2
|
Wu Y, Song Y, Wu D, Mao X, Yang X, Jiang S, Zhang C, Guo R. Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber. Molecules 2023; 28:molecules28062466. [PMID: 36985440 PMCID: PMC10053231 DOI: 10.3390/molecules28062466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
As a new member of the silica-derivative family, modified glass fiber (MGF) has attracted extensive attention because of its excellent properties and potential applications. Surface modification of glass fiber (GF) greatly changes its performance, resulting in a series of changes to its surface structure, wettability, electrical properties, mechanical properties, and stability. This article summarizes the latest research progress in MGF, including the different modification methods, the various properties, and their advanced applications in different fields. Finally, the challenges and possible solutions were provided for future investigations of MGF.
Collapse
Affiliation(s)
- Yawen Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Yangyang Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Di Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence: (S.J.); (R.G.); Tel.: +86-25-85428090 (S.J.); +86-27-84238886 (R.G.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; (Y.W.); (Y.S.); (D.W.); (X.M.)
- Correspondence: (S.J.); (R.G.); Tel.: +86-25-85428090 (S.J.); +86-27-84238886 (R.G.)
| |
Collapse
|
3
|
Kermani F, Nazarnezhad S, Mollaei Z, Mollazadeh S, Ebrahimzadeh-Bideskan A, Askari VR, Oskuee RK, Moradi A, Hosseini SA, Azari Z, Baino F, Kargozar S. Zinc- and Copper-Doped Mesoporous Borate Bioactive Glasses: Promising Additives for Potential Use in Skin Wound Healing Applications. Int J Mol Sci 2023; 24:ijms24021304. [PMID: 36674818 PMCID: PMC9861609 DOI: 10.3390/ijms24021304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, zinc (Zn)- and copper (Cu)-doped 13-93B3 borate mesoporous bioactive glasses (MBGs) were successfully synthesized using nitrate precursors in the presence of Pluronic P123. We benefited from computational approaches for predicting and confirming the experimental findings. The changes in the dynamic surface tension (SFT) of simulated body fluid (SBF) were investigated using the Du Noüy ring method to shed light on the mineralization process of hydroxyapatite (HAp) on the glass surface. The obtained MBGs were in a glassy state before incubation in SBF. The formation of an apatite-like layer on the SBF-incubated borate glasses was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The incorporation of Zn and Cu into the basic composition of 13-93B3 glass led to changes in the glass transition temperature (Tg) (773 to 556 °C), particle size (373 to 64 nm), zeta potential (−12 to −26 mV), and specific surface area (SBET) (54 to 123 m2/g). Based on the K-means algorithm and chi-square automatic interaction detection (CHAID) tree, we found that the SFT of SBF is an important factor for the prediction and confirmation of the HAp mineralization process on the glasses. Furthermore, we proposed a simple calculation, based on SFT variation, to quantify the bioactivity of MBGs. The doped and dopant-free borate MBGs could enhance the proliferation of mouse fibroblast L929 cells at a concentration of 0.5 mg/mL. These glasses also induced very low hemolysis (<5%), confirming good compatibility with red blood cells. The results of the antibacterial test revealed that all the samples could significantly decrease the viability of Pseudomonas aeruginosa. In summary, we showed that Cu-/Zn-doped borate MBGs can be fabricated using a cost-effective method and also show promise for wound healing/skin tissue engineering applications, as especially supported by the cell test with fibroblasts, good compatibility with blood, and antibacterial properties.
Collapse
Affiliation(s)
- Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Zahra Mollaei
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq., Mashhad 917794-8564, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Zoleikha Azari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: (F.B.); (S.K.)
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Correspondence: (F.B.); (S.K.)
| |
Collapse
|
4
|
Kermani F, Sadidi H, Ahmadabadi A, Hoseini SJ, Tavousi SH, Rezapanah A, Nazarnezhad S, Hosseini SA, Mollazadeh S, Kargozar S. Modified Sol–Gel Synthesis of Mesoporous Borate Bioactive Glasses for Potential Use in Wound Healing. Bioengineering (Basel) 2022; 9:bioengineering9090442. [PMID: 36134988 PMCID: PMC9495454 DOI: 10.3390/bioengineering9090442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we successfully utilized nitrate precursors for the synthesis of silver (Ag)-doped borate-based mesoporous bioactive glass (MBGs) based on the 1393B3 glass formulation in the presence of a polymeric substrate (polyvinyl alcohol (PVA)) as a stabilizer of boric acid. The X-ray diffraction (XRD) analysis confirmed the glassy state of all the MBGs. The incorporation of 7.5 mol% Ag into the glass composition led to a decrease in the glass transition temperature (Tg). Improvements in the particle size, zeta potential, surface roughness, and surface area values were observed in the Ag-doped MBGs. The MBGs (1 mg/mL) had no adverse effect on the viability of fibroblasts. In addition, Ag-doped MBGs exhibited potent antibacterial activity against gram-positive and gram-negative species. In summary, a modified sol–gel method was confirmed for producing the Ag-doped 1393B3 glasses, and the primary in vitro outcomes hold promise for conducting in vivo studies for managing burns.
Collapse
Affiliation(s)
- Farzad Kermani
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad 9177948564, Iran
| | - Hossein Sadidi
- Thoracic Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 917699311, Iran
| | - Ali Ahmadabadi
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Surgical Oncology Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Seyed Hasan Tavousi
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Alireza Rezapanah
- Department of General Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sahar Mollazadeh
- Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad 9177948564, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (A.A.); (S.M.); (S.K.); Tel.: +98-513-800-2482 (S.K.)
| |
Collapse
|