1
|
Nishida N, Komori Y, Takarada O, Watanabe A, Tamura S, Kubo S, Shimada I, Kikkawa M. Structural basis for two-way communication between dynein and microtubules. Nat Commun 2020; 11:1038. [PMID: 32098965 PMCID: PMC7042235 DOI: 10.1038/s41467-020-14842-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain via a coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulate MTBD either in high-affinity or low-affinity states by introducing a disulfide bond to the stalk and analyze the resulting structures by NMR and cryo-EM. In the MT-unbound state, the affinity changes of MTBD are achieved by sliding of the stalk α-helix by a half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, MT binding induces further sliding of the stalk α-helix even without the disulfide bond, suggesting how the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high- and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks.
Collapse
Affiliation(s)
- Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuta Komori
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Takarada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoko Tamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Kubo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Structural Change in the Dynein Stalk Region Associated with Two Different Affinities for the Microtubule. J Mol Biol 2015; 428:1886-96. [PMID: 26585405 DOI: 10.1016/j.jmb.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Dynein is a large microtubule-based motor complex that requires tight coupling of intra-molecular ATP hydrolysis with the generation of mechanical force and track-binding activity. However, the microtubule-binding domain is structurally separated by about 15nm from the nucleotide-binding sites by a coiled-coil stalk. Thus, long-range two-way communication is necessary for coordination between the catalytic cycle of ATP hydrolysis and dynein's track-binding affinities. To investigate the structural changes that occur in the dynein stalk region to produce two different microtubule affinities, here we improve the resolution limit of the previously reported structure of the entire stalk region and we investigate structural changes in the dynein stalk and strut/buttress regions by comparing currently available X-ray structures. In the light of recent crystal structures, the basis of the transition from the low-affinity to the high-affinity coiled-coil registry is discussed. A concerted movement model previously reported by Carter and Vale is modified more specifically, and we proposed it as the open zipper model.
Collapse
|
3
|
Ichikawa M, Saito K, Yanagisawa HA, Yagi T, Kamiya R, Yamaguchi S, Yajima J, Kushida Y, Nakano K, Numata O, Toyoshima YY. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain. Mol Biol Cell 2015; 26:4236-47. [PMID: 26399296 PMCID: PMC4642857 DOI: 10.1091/mbc.e15-05-0289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022] Open
Abstract
Dynein light chain 1 (LC1) of the outer arm dynein (OAD) complex associates with the microtubule-binding domain (MTBD) of γ heavy chain inside the complex. LC1 is considered to regulate the OAD activity and ciliary/flagellar motion by modulating γ MTBD's affinity to the B-tubule of the doublet microtubule in the axoneme. The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule.
Collapse
Affiliation(s)
- Muneyoshi Ichikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Haru-Aki Yanagisawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiki Yagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shin Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Yasuharu Kushida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu Numata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Yoko Y Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Shimizu Y, Sakakibara H, Kojima H, Oiwa K. Slow axonemal dynein e facilitates the motility of faster dynein c. Biophys J 2014; 106:2157-65. [PMID: 24853744 DOI: 10.1016/j.bpj.2014.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/23/2023] Open
Abstract
We highly purified the Chlamydomonas inner-arm dyneins e and c, considered to be single-headed subspecies. These two dyneins reside side-by-side along the peripheral doublet microtubules of the flagellum. Electron microscopic observations and single particle analysis showed that the head domains of these two dyneins were similar, whereas the tail domain of dynein e was short and bent in contrast to the straight tail of dynein c. The ATPase activities, both basal and microtubule-stimulated, of dynein e (kcat = 0.27 s(-1) and kcat,MT = 1.09 s(-1), respectively) were lower than those of dynein c (kcat = 1.75 s(-1) and kcat,MT = 2.03 s(-1), respectively). From in vitro motility assays, the apparent velocity of microtubule translocation by dynein e was found to be slow (Vap = 1.2 ± 0.1 μm/s) and appeared independent of the surface density of the motors, whereas dynein c was very fast (Vmax = 15.8 ± 1.5 μm/s) and highly sensitive to decreases in the surface density (Vmin = 2.2 ± 0.7 μm/s). Dynein e was expected to be a processive motor, since the relationship between the microtubule landing rate and the surface density of dynein e fitted well with first-power dependence. To obtain insight into the in vivo roles of dynein e, we measured the sliding velocity of microtubules driven by a mixture of dynein e and c at various ratios. The microtubule translocation by the fast dynein c became even faster in the presence of the slow dynein e, which could be explained by assuming that dynein e does not retard motility of faster dyneins. In flagella, dynein e likely acts as a facilitator by holding adjacent microtubules to aid dynein c's power stroke.
Collapse
Affiliation(s)
- Youské Shimizu
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Hiroaki Kojima
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Tokyo, Japan.
| |
Collapse
|
5
|
Structure of the Microtubule-Binding Domain of Flagellar Dynein. Structure 2014; 22:1628-38. [DOI: 10.1016/j.str.2014.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/06/2023]
|
6
|
Takarada O, Nishida N, Kikkawa M, Shimada I. Backbone and side-chain ¹H, ¹⁵N, and ¹³C resonance assignments of the microtubule-binding domain of yeast cytoplasmic dynein in the high and low-affinity states. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:379-382. [PMID: 23975349 DOI: 10.1007/s12104-013-9522-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Cytoplasmic dynein is a motor protein that walks toward the minus end of microtubules (MTs) by utilizing the energy of ATP hydrolysis. The heavy chain of cytoplasmic dynein contains the microtubule-binding domain (MTBD). Switching of MTBD between high and low affinity states for MTs is crucial for processive movement of cytoplasmic dynein. Previous biochemical studies demonstrated that the affinity of MTBD is regulated by the AAA+ family ATPase domain, which is separated by 15 nm long coiled-coil helix. In order to elucidate the structural basis of the affinity switching mechanism of MTBD, we designed two MTBD constructs, termed MTBD-High and MTBD-Low, which are locked in high and low affinity state for MTs, respectively, by introducing a disulfide bond between the coiled-coil helix. Here, we established the backbone and side-chain assignments of MTBD-High and MTBD-Low for further structural analyses.
Collapse
Affiliation(s)
- Osamu Takarada
- Graduated School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
7
|
Shimizu Y, Shimizu T, Nara M, Kikumoto M, Kojima H, Morii H. Effects of the KIF2C neck peptide on microtubules: lateral disintegration of microtubules and β-structure formation. FEBS J 2013; 280:1681-92. [PMID: 23398918 DOI: 10.1111/febs.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/23/2013] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules.
Collapse
Affiliation(s)
- Youské Shimizu
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Probing interactions of tubulin with small molecules, peptides, and protein fragments by solution nuclear magnetic resonance. Methods Cell Biol 2010. [PMID: 20466147 DOI: 10.1016/s0091-679x(10)95022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The description of the molecular mechanisms of interaction between tubulin or microtubules and partners at atomic scale is expected to have critical impacts on the understanding of basic physiological processes. This information will also help the design of future drug candidates that may be used to fight various pathologies such as cancer or neurological diseases. For these reasons, this aspect of tubulin research has been tackled since the seventies using many different methods and at different scales. NMR appears as a unique approach to provide, with atomic resolution, the solution structure and dynamical properties of tubulin/microtubule partners in free and bound states. Though tubulin is not directly amenable to solution NMR, the NMR ligand-based experiments allow one to obtain valuable data on the molecular mechanisms that sustain structure-function relationship, in particular atomic details on the partner binding site. We will first describe herein some basic principles of solution NMR spectroscopy that should not be missed for a comprehensive reading of NMR reports. A series of results will then be presented to illustrate the wealth and variety of NMR experiments and how this approach enlightens tubulin/microtubules interaction with partners.
Collapse
|
9
|
McNaughton L, Tikhonenko I, Banavali NK, LeMaster DM, Koonce MP. A low affinity ground state conformation for the Dynein microtubule binding domain. J Biol Chem 2010; 285:15994-6002. [PMID: 20351100 DOI: 10.1074/jbc.m109.083535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynein interacts with microtubules through a dedicated binding domain that is dynamically controlled to achieve high or low affinity, depending on the state of nucleotide bound in a distant catalytic pocket. The active sites for microtubule binding and ATP hydrolysis communicate via conformational changes transduced through a approximately 10-nm length antiparallel coiled-coil stalk, which connects the binding domain to the roughly 300-kDa motor core. Recently, an x-ray structure of the murine cytoplasmic dynein microtubule binding domain (MTBD) in a weak affinity conformation was published, containing a covalently constrained beta(+) registry for the coiled-coil stalk segment (Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., Vale, R. D., and Gibbons, I. R. (2008) Science 322, 1691-1695). We here present an NMR analysis of the isolated MTBD from Dictyostelium discoideum that demonstrates the coiled-coil beta(+) registry corresponds to the low energy conformation for this functional region of dynein. Addition of sequence encoding roughly half of the coiled-coil stalk proximal to the binding tip results in a decreased affinity of the MTBD for microtubules. In contrast, addition of the complete coiled-coil sequence drives the MTBD to the conformationally unstable, high affinity binding state. These results suggest a thermodynamic coupling between conformational free energy differences in the alpha and beta(+) registries of the coiled-coil stalk that acts as a switch between high and low affinity conformations of the MTBD. A balancing of opposing conformations in the stalk and MTBD enables potentially modest long-range interactions arising from ATP binding in the motor core to induce a relaxation of the MTBD into the stable low affinity state.
Collapse
Affiliation(s)
- Lynn McNaughton
- Division of Translational Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | | | | | |
Collapse
|