1
|
Akbey Ü. Site-specific protein backbone deuterium 2H α quadrupolar patterns by proton-detected quadruple-resonance 3D 2H αc αNH MAS NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101861. [PMID: 36989552 DOI: 10.1016/j.ssnmr.2023.101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/11/2023]
Abstract
A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, United States.
| |
Collapse
|
2
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
3
|
Akbey Ü. Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2H- 13C- 1H MAS NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:23-28. [PMID: 34997409 DOI: 10.1007/s10858-021-00388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium's large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H-13C-1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H-15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.
Collapse
Affiliation(s)
- Ümit Akbey
- Radboud University, Magnetic Resonance Research Center, Institute for Molecules and Materials, Nijmegen, The Netherlands.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Akbey Ü. Dynamics of uniformly labelled solid proteins between 100 and 300 K: A 2D 2H- 13C MAS NMR approach. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106974. [PMID: 33823335 DOI: 10.1016/j.jmr.2021.106974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
We describe a 2H based MAS nuclear magnetic resonance (NMR) method to obtain site-specific molecular dynamics of biomolecules. The method utilizes the use of deuterium nucleus as a spin label that is proven to be very useful in dynamics studies of solid biological and functional materials. The aim is to understand overall characteristics of protein backbone and side-chain motions for CD3, CD2 and CD groups, in terms of timescale, type and activation energy of the underlying processes. Variable temperature two-dimensional (2D) 2H-13C correlation MAS NMR spectra were recorded for the uniformly 2H,13C,15N labelled Alanine and microcrystalline SH3 at a broad temperature range, from 320 K down to 100 K. First, the deuterium quadrupolar-coupling constant from specific D-C sites is obtained with the 2D experiment by utilizing carbon chemical shifts. Second, the static quadrupolar patterns are obtained at 100 K. Third, variable temperature approach enabled the observation of quadrupolar pattern over different motional regimes; slow, intermediate and fast. And finally, the apparent activation energies for C-D sites are determined and compared, by evaluating the temperature induced signal intensities. This information led to the determination of the dynamic processes for different D-C sites at a broad range of temperature and motional timescales. This is a first representation of 2D 2H-13C MAS NMR approach applied to fully isotope labelled deuterated protein covering 220 K temperature range.
Collapse
Affiliation(s)
- Ümit Akbey
- Weizmann Institute of Science, Department of Chemical and Biological Physics, Perlman Chemical Sciences Building, P.O. Box 26, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
7
|
Collier KA, Sengupta S, Espinosa CA, Kelly JE, Kelz JI, Martin RW. Design and construction of a quadruple-resonance MAS NMR probe for investigation of extensively deuterated biomolecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:8-17. [PMID: 29059553 PMCID: PMC6317732 DOI: 10.1016/j.jmr.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
Extensive deuteration is frequently used in solid-state NMR studies of biomolecules because it dramatically reduces both homonuclear (1H-1H) and heteronuclear (1H-13C and 1H-15N) dipolar interactions. This approach greatly improves resolution, enables low-power rf decoupling, and facilitates 1H-detected experiments even in rigid solids at moderate MAS rates. However, the resolution enhancement is obtained at some cost due the reduced abundance of protons available for polarization transfer. Although deuterium is a useful spin-1 NMR nucleus, in typical experiments the deuterons are not directly utilized because the available probes are usually triple-tuned to 1H,13C and 15N. Here we describe a 1H/13C/2H/15N MAS ssNMR probe designed for solid-state NMR of extensively deuterated biomolecules. The probe utilizes coaxial coils, with a modified Alderman-Grant resonator for the 1H channel, and a multiply resonant solenoid for 13C/2H/15N. A coaxial tuning-tube design is used for all four channels in order to efficiently utilize the constrained physical space available inside the magnet bore. Isolation among the channels is likewise achieved using short, adjustable transmission line elements. We present benchmarks illustrating the tuning of each channel and isolation among them and the magnetic field profiles at each frequency of interest. Finally, representative NMR data are shown demonstrating the performance of both the detection and decoupling circuits.
Collapse
Affiliation(s)
- Kelsey A Collier
- Department of Physics & Astronomy, UC Irvine, Irvine, CA 92697-4575, United States
| | - Suvrajit Sengupta
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | | | - John E Kelly
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Rachel W Martin
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States; Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
8
|
Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH. Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs Solution-State Methods. J Phys Chem B 2017; 121:7671-7680. [PMID: 28737919 DOI: 10.1021/acs.jpcb.7b06944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and dynamical characterization of membrane proteins in a lipid bilayer at physiological pH and temperature and free of crystal constraints is crucial for the elucidation of a structure/dynamics-activity relationship. Toward this aim, we explore here the properties of the outer-membrane protein OmpX embedded in lipid bilayer nanodiscs using proton-detected magic angle spinning (MAS) solid-state NMR at 60 and 110 kHz. [1H,15N]-correlation spectra overlay well with the corresponding solution-state NMR spectra. Line widths as well as line intensities in solid and solution both depend critically on the sample temperature and, in particular, on the crossing of the lipid phase transition temperature. MAS (110 kHz) experiments yield well-resolved NMR spectra also for fully protonated OmpX and both below and above the lipid phase transition temperature.
Collapse
Affiliation(s)
| | - Lukas Frey
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Bibow
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon , 7 passage du Vercors, 69367 Lyon, France
| | - Roland Riek
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- ETH Zürich , Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
|
10
|
Lesot P, Lafon O, Berdagué P. Correlation 2D-NMR experiments involving both 13C and 2H isotopes in oriented media: methodological developments and analytical applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:595-613. [PMID: 25209071 DOI: 10.1002/mrc.4118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Correlation 2D-NMR experiments for (13)C and (2)H isotopes turn out to be powerful methods for the assignment of the quadrupolar doublets in the (2)H NMR spectra of isotopically modified (polydeuterated or perdeuterated) or unmodified solutes in homogeneously oriented solvents, such as thermotropic systems or lyotropic liquid crystals. We review here the different pulse sequences, which have been employed, their properties, and their most salient applications. These 2D-NMR sequences have been used for (i) (13)C-(2)H correlation with and without (1)H relay and (ii) (2)H-(2)H correlation with (13)C relay. The (13)C-(2) H correlation experiments without (1)H relay have been achieved for specifically deuterated or non-selectively deuterated analytes, but also more recently for isotopically unmodified ones thanks to the high sensitivity of very high-field NMR spectrometers (21.1 T) equipped with cryogenic probes. The (13)C-(2)H correlation 2D-NMR experiments are especially useful for the assignment of overcrowded deuterium spectra because the (2)H signals are correlated to (13)C signals, which benefit from a much larger dispersion of chemical shifts. In this contribution, particular attention will be paid to the use of correlation 2D-NMR experiments for (2)H and (13)C nuclei in weakly aligning, polypeptide oriented chiral solvents, because these methods are useful and original tools for enantiomeric and enantiotopic analyses.
Collapse
Affiliation(s)
- Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR-CNRS 8182, Université de Paris-Sud, Orsay, F-91405, Orsay CEDEX, France
| | | | | |
Collapse
|
11
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins. Angew Chem Int Ed Engl 2014; 53:2438-42. [PMID: 24474388 DOI: 10.1002/anie.201308927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Indexed: 11/12/2022]
Abstract
(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H excitation instead of (1)H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.
Collapse
Affiliation(s)
- Ümit Akbey
- Leibniz Institute for Molecular Pharmacology, Robert Roessle Str. 10, 13125 Berlin (Germany).
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jain SK, Nielsen AB, Hiller M, Handel L, Ernst M, Oschkinat H, Akbey Ü, Nielsen NC. Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic RESPIRATIONCP in solid-state NMR. Phys Chem Chem Phys 2014; 16:2827-30. [DOI: 10.1039/c3cp54419b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bjerring M, Jain S, Paaske B, Vinther JM, Nielsen NC. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation. Acc Chem Res 2013; 46:2098-107. [PMID: 23557787 DOI: 10.1021/ar300329g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.
Collapse
Affiliation(s)
- Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Sheetal Jain
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Joachim M. Vinther
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
15
|
Mithu VS, Bakthavatsalam S, Madhu PK. (13)C-(13)c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency. PLoS One 2013; 8:e50504. [PMID: 23326308 PMCID: PMC3542364 DOI: 10.1371/journal.pone.0050504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.
Collapse
Affiliation(s)
- Venus Singh Mithu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Subha Bakthavatsalam
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Perunthiruthy K. Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
- * E-mail:
| |
Collapse
|
16
|
Shi X, Yarger JL, Holland GP. 2H-13C HETCOR MAS NMR for indirect detection of 2H quadrupole patterns and spin-lattice relaxation rates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 226:1-12. [PMID: 23174312 DOI: 10.1016/j.jmr.2012.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
Two-dimensional (2D) cross-polarization magic angle spinning (CP-MAS) (2)H-(13)C heteronuclear correlation (HETCOR) experiments were utilized to indirectly detect site-specific deuterium MAS powder patterns. The (2)H-(13)C cross-polarization efficiency is orientation-dependent and non-uniform for all crystallites. This leads to difficulty in extracting the correct (2)H MAS quadrupole powder patterns. In order to obtain accurate deuterium line shapes, (13)C spin lock rf field, spin lock rf ramp and CP contact time were carefully calibrated with the assistance of theoretical simulations. The extracted quadrupole patterns for U-[(2)H/(13)C/(15)N]-alanine indicate that the methyl deuterium undergoes classic, three-site jumping in the fast motion regime (10(-8)-10(-12)s) and the methine deuterium has a rigid deuterium powder pattern. For U-[(2)H/(13)C/(15)N]-phenylalanine, indirectly detected deuterium line shapes illustrate that the aromatic ring undergoes 180° flips in the fast motion regime while (2)Hβ and (2)Hα are completely rigid. The experimental deuterium line shapes for U-[(2)H/(13)C/(15)N]-proline reflect that (2)Hβ, (2)Hγ and (2)Hδ are subjected to fast, two-site reorientations at an angle of (15±5)°, (30±5)° and (25±10)° respectively. In addition, an approach that combines a composite inversion pulse with (2)H-(13)C CP-MAS is applied to measure (2)H spin-lattice relaxation times in a site-specific, (13)C-detected fashion.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | | | | |
Collapse
|
17
|
Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH. Hochaufgelöste Festkörper-NMR-Spektren einer sedimentierten, nichtkristallinen dodekameren Helicase (59 kDa). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH. A Sedimented Sample of a 59 kDa Dodecameric Helicase Yields High-Resolution Solid-State NMR Spectra. Angew Chem Int Ed Engl 2012; 51:7855-8. [DOI: 10.1002/anie.201200779] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/10/2012] [Indexed: 11/10/2022]
|
19
|
Akbey U, Rossum BJV, Oschkinat H. Practical aspects of high-sensitivity multidimensional ¹³C MAS NMR spectroscopy of perdeuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 217:77-85. [PMID: 22440428 DOI: 10.1016/j.jmr.2012.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/13/2012] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
The double nucleus enhanced recoupling (DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2D (13)C-(13)C correlation experiments as compared to PDSD [1]. Here, a quantitative comparison of PDSD, (1)H-DARR, (2)H-DARR, and (1)H+(2)H DONER has been performed to analyze the influence of spin diffusion on polarization transfer processes. Cross peak buildup curves were analyzed to obtain guidelines for choosing the best experimental parameters. The largest cross peak intensities were observed for the DONER experiments. The fastest build-up rate was observed in the (2)H-DARR experiment within a buildup range of ∼18-45 ms, whereas values between 24 and 69 ms are observed for the DONER experiment. Furthermore, the effects of direct excitation and cross polarization (CP) are compared. A comparison between DONER and RFDR experiments reveal ∼50% more intense cross peaks in the C(α)-CO and C(α)-C(alip) regions of the 2D (13)C-(13)C DONER spectrum applying proton CP ((1)H-(13)C). As a parameter determining the S/N in (13)C-(13)C correlation experiments, proton CP efficiency is investigated using deuterated samples with proton/deuterium ratios at 20%, 40%, and 100% H(2)O. Sufficiently strong (13)C CPMAS signal intensity is observed for such proteins even with very low proton concentration. The effect of proton and/or deuterium decoupling is analyzed at various MAS spinning frequencies. Deuterium decoupling was found most crucial for obtaining high resolution. Long range correlations are readily observed representing distances up to ∼6 Å by using DONER approach.
Collapse
Affiliation(s)
- Umit Akbey
- NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle Str. 10, 13125 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Reif B. Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:1-12. [PMID: 22280934 DOI: 10.1016/j.jmr.2011.12.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 05/14/2023]
Abstract
High resolution proton spectra are obtained in MAS solid-state NMR in case samples are prepared using perdeuterated protein and D(2)O in the recrystallization buffer. Deuteration reduces drastically (1)H, (1)H dipolar interactions and allows to obtain amide proton line widths on the order of 20 Hz. Similarly, high-resolution proton spectra of aliphatic groups can be obtained if specifically labeled precursors for biosynthesis of methyl containing side chains are used, or if limited amounts of H(2)O in the bacterial growth medium is employed. This review summarizes recent spectroscopic developments to access structure and dynamics of biomacromolecules in the solid-state, and shows a number of applications to amyloid fibrils and membrane proteins.
Collapse
Affiliation(s)
- Bernd Reif
- Munich Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
21
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|