1
|
Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Front Mol Biosci 2023; 10:1215550. [PMID: 37654797 PMCID: PMC10465699 DOI: 10.3389/fmolb.2023.1215550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Methoprene-tolerant (Met) and germ cell-expressed (Gce) proteins were shown to be juvenile hormone (JH) receptors of Drosophila melanogaster with partially redundant functions. We raised the question of where the functional differentiation of paralogs comes from. Therefore, we tested Met and Gce interaction patterns with selected partners. In this study, we showed the ability of Gce and its C-terminus (GceC) to interact with 14-3-3 in the absence of JH. In contrast, Met or Met C-terminus (MetC) interactions with 14-3-3 were not observed. We also performed a detailed structural analysis of Met/Gce interactions with the nuclear receptor fushi tarazu factor-1 (Ftz-F1) ligand-binding domain. We showed that GceC comprising an Ftz-F1-binding site and full-length protein interacts with Ftz-F1. In contrast to Gce, only MetC (not full-length Met) can interact with Ftz-F1 in the absence of JH. We propose that the described differences result from the distinct tertiary structure and accessibility of binding sites in the full-length Met/Gce. Moreover, we hypothesize that each interacting partner can force disordered MetC and GceC to change the structure in a partner-specific manner. The observed interactions seem to determine the subcellular localization of Met/Gce by forcing their translocation between the nucleus and the cytoplasm, which may affect the activity of the proteins. The presented differences between Met and Gce can be crucial for their functional differentiation during D. melanogaster development and indicate Gce as a more universal and more active paralog. It is consistent with the theory indicating gce as an ancestor gene.
Collapse
Affiliation(s)
- M. Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - A. Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - P. Bartosińska-Marzec
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - W. Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - G. Popowicz
- Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - A. Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - A. Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - B. Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
2
|
Romero JA, Putko P, Urbańczyk M, Kazimierczuk K, Zawadzka-Kazimierczuk A. Linear discriminant analysis reveals hidden patterns in NMR chemical shifts of intrinsically disordered proteins. PLoS Comput Biol 2022; 18:e1010258. [PMID: 36201530 PMCID: PMC9578625 DOI: 10.1371/journal.pcbi.1010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
NMR spectroscopy is key in the study of intrinsically disordered proteins (IDPs). Yet, even the first step in such an analysis-the assignment of observed resonances to particular nuclei-is often problematic due to low peak dispersion in the spectra of IDPs. We show that the assignment process can be aided by finding "hidden" chemical shift patterns specific to the amino acid residue types. We find such patterns in the training data from the Biological Magnetic Resonance Bank using linear discriminant analysis, and then use them to classify spin systems in an α-synuclein sample prepared by us. We describe two situations in which the procedure can greatly facilitate the analysis of NMR spectra. The first involves the mapping of spin systems chains onto the protein sequence, which is part of the assignment procedure-a prerequisite for any NMR-based protein analysis. In the second, the method supports assignment transfer between similar samples. We conducted experiments to demonstrate these cases, and both times the majority of spin systems could be unambiguously assigned to the correct residue types.
Collapse
Affiliation(s)
- Javier A. Romero
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Paulina Putko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- * E-mail: (KK); (AZK)
| |
Collapse
|
3
|
Coudevylle N, Banaś B, Baumann V, Schuschnig M, Zawadzka-Kazimierczuk A, Koźmiński W, Martens S. Mechanism of Atg9 recruitment by Atg11 in the cytoplasm-to-vacuole targeting pathway. J Biol Chem 2022; 298:101573. [PMID: 35007534 PMCID: PMC8814668 DOI: 10.1016/j.jbc.2022.101573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway for the removal of damaged and superfluous cytoplasmic material. This is achieved by the sequestration of this cargo material within double-membrane vesicles termed autophagosomes. Autophagosome formation is mediated by the conserved autophagy machinery. In selective autophagy, this machinery including the transmembrane protein Atg9 is recruited to specific cargo material via cargo receptors and the Atg11/FIP200 scaffold protein. The molecular details of the interaction between Atg11 and Atg9 are unclear, and it is still unknown how the recruitment of Atg9 is regulated. Here we employ NMR spectroscopy of the N-terminal disordered domain of Atg9 (Atg9-NTD) to map its interaction with Atg11 revealing that it involves two short peptides both containing a PLF motif. We show that the Atg9-NTD binds to Atg11 with an affinity of about 1 μM and that both PLF motifs contribute to the interaction. Mutation of the PLF motifs abolishes the interaction of the Atg9-NTD with Atg11, reduces the recruitment of Atg9 to the precursor aminopeptidase 1 (prApe1) cargo, and blocks prApe1 transport into the vacuole by the selective autophagy-like cytoplasm-to-vacuole (Cvt) targeting pathway while not affecting bulk autophagy. Our results provide mechanistic insights into the interaction of the Atg11 scaffold with the Atg9 transmembrane protein in selective autophagy and suggest a model where only clustered Atg11 when bound to the prApe1 cargo is able to efficiently recruit Atg9 vesicles.
Collapse
Affiliation(s)
| | - Bartłomiej Banaś
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Verena Baumann
- Max Perutz Laboratories, University of Vienna, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | | | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sascha Martens
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto P, Schreiner C, Hollerl E, Mateos B, Geist L, Faulkner G, Kozminski W, Svergun DI, Warscheid B, Zagrovic B, Gautel M, Konrat R, Djinović-Carugo K. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. SCIENCE ADVANCES 2021; 7:eabg7653. [PMID: 34049882 PMCID: PMC8163081 DOI: 10.1126/sciadv.abg7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.
Collapse
Affiliation(s)
- Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Joan L Arolas
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Ariadna Rodriguez Chamorro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Andrea Ghisleni
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anton Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Euripedes De Almeida Ribeiro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Miriam Pedron
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. BohrGasse 9, A-1030 Vienna, Austria
| | - Pierantonio Doto
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Eneda Hollerl
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Leonhard Geist
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | | - Wiktor Kozminski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dmitri I Svergun
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Mathias Gautel
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Górka M, Żerko S, Konrat R, Koźmiński W, Kurzbach D. 1H, 13C and 15N backbone resonance assignment of BRCA1 fragment 219-504. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:289-293. [PMID: 32583165 PMCID: PMC7462910 DOI: 10.1007/s12104-020-09963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The breast cancer susceptibility protein 1 (BRCA1) plays a central role in the suppression of human breast and ovarian cancer. Germ line mutations of the BRCA1 gene are responsible for the hereditary breast and ovarian cancer (HBOC) syndrome. Here were report 1H, 13C, and 15N resonance assignments for the intrinsically disordered BRCA1 fragment 219-504, which contains important interaction sites for the proto-oncogenic transcription factor MYC as well as for p53. A nuclear magnetic resonance assignment was achieved at 18.8 T magnetic field strength using a 5D HN(CA)CONH experiment and its associated 4D H(NCA)CONH and 4D (H)N(CA)CONH experiments. 13Cα and 13Cβ assignments were obtained using a 5D HabCabCONH experiment. With this strategy, 90% of 1H/15N backbone pairs could be assigned. Similarly, 264 C' resonances were assigned corresponding to 86% of the total number of C' atoms. In addition, 252 Cβ resonances (i.e. 85%) were assigned, together with 461 attached Hβ nuclei, as well as 264 (i.e. 86%) Cα resonances, together with 275 attached Hα nuclei.
Collapse
Affiliation(s)
- Michał Górka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Konrat
- Department for Structural and Computational Biology, University Vienna, Campus Vienna BioCenter 5, 1030, Vienna, Austria
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Grudziąż K, Zawadzka-Kazimierczuk A, Koźmiński W. High-dimensional NMR methods for intrinsically disordered proteins studies. Methods 2018; 148:81-87. [PMID: 29705209 DOI: 10.1016/j.ymeth.2018.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are getting more and more interest of the scientific community. Nuclear magnetic resonance (NMR) is often a technique of choice for these studies, as it provides atomic-resolution information on structure, dynamics and interactions of IDPs. Nonetheless, NMR spectra of IDPs are typically extraordinary crowded, comparing to those of structured proteins. To overcome this problem, high-dimensional NMR experiments can be used, which allow for a better peak separation. In the present review different aspects of such experiments are discussed, from data acquisition and processing to analysis, focusing on experiments for resonance assignment.
Collapse
Affiliation(s)
- Katarzyna Grudziąż
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
7
|
Nielsen JT, Mulder FAA. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 70:141-165. [PMID: 29399725 DOI: 10.1007/s10858-018-0166-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Chemical shifts contain important site-specific information on the structure and dynamics of proteins. Deviations from statistical average values, known as random coil chemical shifts (RCCSs), are extensively used to infer these relationships. Unfortunately, the use of imprecise reference RCCSs leads to biased inference and obstructs the detection of subtle structural features. Here we present a new method, POTENCI, for the prediction of RCCSs that outperforms the currently most authoritative methods. POTENCI is parametrized using a large curated database of chemical shifts for protein segments with validated disorder; It takes pH and temperature explicitly into account, and includes sequence-dependent nearest and next-nearest neighbor corrections as well as second-order corrections. RCCS predictions with POTENCI show root-mean-square values that are lower by 25-78%, with the largest improvements observed for 1Hα and 13C'. It is demonstrated how POTENCI can be applied to analyze subtle deviations from RCCSs to detect small populations of residual structure in intrinsically disorder proteins that were not discernible before. POTENCI source code is available for download, or can be deployed from the URL http://www.protein-nmr.org .
Collapse
Affiliation(s)
- Jakob Toudahl Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Flamm AG, Żerko S, Zawadzka-Kazimierczuk A, Koźmiński W, Konrat R, Coudevylle N. 1H, 15N, 13C resonance assignment of human GAP-43. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:171-174. [PMID: 26748655 PMCID: PMC4788685 DOI: 10.1007/s12104-015-9660-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/28/2015] [Indexed: 05/31/2023]
Abstract
GAP-43 is a 25 kDa neuronal intrinsically disordered protein, highly abundant in the neuronal growth cone during development and regeneration. The exact molecular function(s) of GAP-43 remains unclear but it appears to be involved in growth cone guidance and actin cytoskeleton organization. Therefore, GAP-43 seems to play an important role in neurotransmitter vesicle fusion and recycling, long-term potentiation, spatial memory formation and learning. Here we report the nearly complete assignment of recombinant human GAP-43.
Collapse
Affiliation(s)
- Andrea Gabriele Flamm
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Nicolas Coudevylle
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Piai A, Gonnelli L, Felli IC, Pierattelli R, Kazimierczuk K, Grudziąż K, Koźmiński W, Zawadzka-Kazimierczuk A. Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 64:239-53. [PMID: 26891900 PMCID: PMC4824835 DOI: 10.1007/s10858-016-0024-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/11/2016] [Indexed: 05/07/2023]
Abstract
Resonance assignment is a prerequisite for almost any NMR-based study of proteins. It can be very challenging in some cases, however, due to the nature of the protein under investigation. This is the case with intrinsically disordered proteins, for example, whose NMR spectra suffer from low chemical shifts dispersion and generally low resolution. For these systems, sequence specific assignment is highly time-consuming, so the prospect of using automatic strategies for their assignment is very attractive. In this article we present a new version of the automatic assignment program TSAR dedicated to intrinsically disordered proteins. In particular, we demonstrate how the automatic procedure can be improved by incorporating methods for amino acid recognition and information on chemical shifts in selected amino acids. The approach was tested in silico on 16 disordered proteins and experimentally on α-synuclein, with remarkably good results.
Collapse
Affiliation(s)
- Alessandro Piai
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Leonardo Gonnelli
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Roberta Pierattelli
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | | | - Katarzyna Grudziąż
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
10
|
Cabedo Martinez AI, Weinhäupl K, Lee WK, Wolff NA, Storch B, Żerko S, Konrat R, Koźmiński W, Breuker K, Thévenod F, Coudevylle N. Biochemical and Structural Characterization of the Interaction between the Siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal Domain of Its Endocytic Receptor SLC22A17. J Biol Chem 2016; 291:2917-30. [PMID: 26635366 PMCID: PMC4742754 DOI: 10.1074/jbc.m115.685644] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/29/2015] [Indexed: 11/22/2022] Open
Abstract
The neutrophil gelatinase-associated lipocalin (NGAL, also known as LCN2) and its cellular receptor (LCN2-R, SLC22A17) are involved in many physiological and pathological processes such as cell differentiation, apoptosis, and inflammation. These pleiotropic functions mainly rely on NGAL's siderophore-mediated iron transport properties. However, the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo state to form a fuzzy complex. The relatively weak affinity (≈10 μm) between human LCN2-R-NTD and apoNGAL suggests that the N terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, human LCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.
Collapse
Affiliation(s)
- Ana-Isabel Cabedo Martinez
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Katharina Weinhäupl
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Wing-Kee Lee
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Natascha A Wolff
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Barbara Storch
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB, Innrain 80/82, 6020 Innsbruck, Austria, and
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Robert Konrat
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB, Innrain 80/82, 6020 Innsbruck, Austria, and
| | - Frank Thévenod
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Nicolas Coudevylle
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria,
| |
Collapse
|
11
|
Nowakowski M, Saxena S, Stanek J, Żerko S, Koźmiński W. Applications of high dimensionality experiments to biomolecular NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:49-73. [PMID: 26592945 DOI: 10.1016/j.pnmrs.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/23/2023]
Abstract
High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable time. In this review we present and compare some significant applications of NMR experiments of dimensionality higher than three in the field of biomolecular studies in solution.
Collapse
Affiliation(s)
- Michał Nowakowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Saurabh Saxena
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jan Stanek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Szymon Żerko
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
12
|
Platzer G, Żerko S, Saxena S, Koźmiński W, Konrat R. (1)H, (15)N, (13)C resonance assignment of human osteopontin. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:289-292. [PMID: 25616494 PMCID: PMC4568010 DOI: 10.1007/s12104-014-9594-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
Osteopontin (OPN) is a 33.7 kDa intrinsically disordered protein and a member of the SIBLING family of proteins. OPN is bearing a signal peptide for secretion into the extracellular space, where it exerts its main physiological function, the control of calcium biomineralization. It is often involved in tumorigenic processes influencing proliferation, migration and survival, as well as the adhesive properties of cancer cells via CD44 and integrin signaling pathways. Here we report the nearly complete NMR chemical shift assignment of recombinant human osteopontin.
Collapse
Affiliation(s)
- Gerald Platzer
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Saurabh Saxena
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Konrat
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
13
|
Dziekański P, Grudziąż K, Jarvoll P, Koźmiński W, Zawadzka-Kazimierczuk A. (13)C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing. JOURNAL OF BIOMOLECULAR NMR 2015; 62:179-90. [PMID: 25902761 PMCID: PMC4451475 DOI: 10.1007/s10858-015-9932-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 05/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) have recently attracted much interest, due to their role in many biological processes, including signaling and regulation mechanisms. High-dimensional (13)C direct-detected NMR experiments have proven exceptionally useful in case of IDPs, providing spectra with superior peak dispersion. Here, two such novel experiments recorded with non-uniform sampling are introduced, these are 5D HabCabCO(CA)NCO and 5D HNCO(CA)NCO. Together with the 4D (HACA)CON(CA)NCO, an extension of the previously published 3D experiments (Pantoja-Uceda and Santoro in J Biomol NMR 59:43-50, 2014. doi: 10.1007/s10858-014-9827-1), they form a set allowing for complete and reliable resonance assignment of difficult IDPs. The processing is performed with sparse multidimensional Fourier transform based on the concept of restricting (fixing) some of spectral dimensions to a priori known resonance frequencies. In our study, a multiple-fixing method was developed, that allows easy access to spectral data. The experiments were tested on a resolution-demanding alpha-synuclein sample. Due to superior peak dispersion in high-dimensional spectrum and availability of the sequential connectivities between four consecutive residues, the overwhelming majority of resonances could be assigned automatically using the TSAR program.
Collapse
Affiliation(s)
- Paweł Dziekański
- />Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- />Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Katarzyna Grudziąż
- />Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patrik Jarvoll
- />Agilent Technologies, 10 Mead Road, Yarnton, OX5 1QU UK
| | - Wiktor Koźmiński
- />Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- />Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
14
|
Brutscher B, Felli IC, Gil-Caballero S, Hošek T, Kümmerle R, Piai A, Pierattelli R, Sólyom Z. NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:49-122. [PMID: 26387100 DOI: 10.1007/978-3-319-20164-1_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thanks to recent improvements in NMR instrumentation, pulse sequence design, and sample preparation, a panoply of new NMR tools has become available for atomic resolution characterization of intrinsically disordered proteins (IDPs) that are optimized for the particular chemical and spectroscopic properties of these molecules. A wide range of NMR observables can now be measured on increasingly complex IDPs that report on their structural and dynamic properties in isolation, as part of a larger complex, or even inside an entire living cell. Herein we present basic NMR concepts, as well as optimised tools available for the study of IDPs in solution. In particular, the following sections are discussed hereafter: a short introduction to NMR spectroscopy and instrumentation (Sect. 3.1), the effect of order and disorder on NMR observables (Sect. 3.2), particular challenges and bottlenecks for NMR studies of IDPs (Sect. 3.3), 2D HN and CON NMR experiments: the fingerprint of an IDP (Sect. 3.4), tools for overcoming major bottlenecks of IDP NMR studies (Sect. 3.5), 13C detected experiments (Sect. 3.6), from 2D to 3D: from simple snapshots to site-resolved characterization of IDPs (Sect. 3.7), sequential NMR assignment: 3D experiments (Sect. 3.8), high-dimensional NMR experiments (nD, with n>3) (Sect. 3.9) and conclusions and perspectives (Sect. 3.10).
Collapse
Affiliation(s)
- Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France.
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | | | - Tomáš Hošek
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Rainer Kümmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Alessandro Piai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | - Zsófia Sólyom
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France
| |
Collapse
|
15
|
Dutta SK, Serrano P, Proudfoot A, Geralt M, Pedrini B, Herrmann T, Wüthrich K. APSY-NMR for protein backbone assignment in high-throughput structural biology. JOURNAL OF BIOMOLECULAR NMR 2015; 61:47-53. [PMID: 25428764 PMCID: PMC4305044 DOI: 10.1007/s10858-014-9881-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/18/2014] [Indexed: 05/12/2023]
Abstract
A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [(1)H,(1)H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, and Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, and Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, and Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, and Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
| | - Bill Pedrini
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, and Joint Center for Structural Genomics (http://www.jcsg.org.), La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Torsten Herrmann
- Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | | |
Collapse
|
16
|
Yao X, Becker S, Zweckstetter M. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 60:231-40. [PMID: 25367087 DOI: 10.1007/s10858-014-9872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 05/21/2023]
Abstract
Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY) experiment for backbone assignment of intrinsically disordered proteins. The 6D HCACONCAH APSY correlates the six different chemical shifts, H(α)(i - 1), C(α)(i - 1), C'(i - 1), N(i), Cα(i) and Hα(i). Application to two intrinsically disordered proteins, 140-residue α-synuclein and a 352-residue isoform of Tau, demonstrates that the chemical shift information provided by the 6D HCACONCAH APSY allows efficient backbone resonance assignment of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Xuejun Yao
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | | |
Collapse
|
17
|
Piai A, Hošek T, Gonnelli L, Zawadzka-Kazimierczuk A, Koźmiński W, Brutscher B, Bermel W, Pierattelli R, Felli IC. "CON-CON" assignment strategy for highly flexible intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 60:209-18. [PMID: 25326659 DOI: 10.1007/s10858-014-9867-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/10/2014] [Indexed: 05/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) are a class of highly flexible proteins whose characterization by NMR spectroscopy is complicated by severe spectral overlaps. The development of experiments designed to facilitate the sequence-specific assignment procedure is thus very important to improve the tools for the characterization of IDPs and thus to be able to focus on IDPs of increasing size and complexity. Here, we present and describe the implementation of a set of novel ¹H-detected 5D experiments, (HACA)CON(CACO)NCO(CA)HA, BT-(H)NCO(CAN)CONNH and BT-HN(COCAN)CONNH, optimized for the study of highly flexible IDPs that exploit the best resolved correlations, those involving the carbonyl and nitrogen nuclei of neighboring amino acids, to achieve sequence-specific resonance assignment. Together with the analogous recently proposed pulse schemes based on ¹³C detection, they form a complete set of experiments for sequence-specific assignment of highly flexible IDPs. Depending on the particular sample conditions (concentration, lifetime, pH, temperature, etc.), these experiments present certain advantages and disadvantages that will be discussed. Needless to say, that the availability of a variety of complementary experiments will be important for accurate determination of resonance frequencies in complex IDPs.
Collapse
Affiliation(s)
- Alessandro Piai
- CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Orbán-Németh Z, Henen MA, Geist L, Żerko S, Saxena S, Stanek J, Koźmiński W, Propst F, Konrat R. Backbone and partial side chain assignment of the microtubule binding domain of the MAP1B light chain. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:123-127. [PMID: 23339032 PMCID: PMC3955483 DOI: 10.1007/s12104-013-9466-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/12/2013] [Indexed: 06/01/2023]
Abstract
Microtubule-associated protein 1B (MAP1B) is a classical high molecular mass microtubule-associated protein expressed at high levels in the brain. It confers specific properties to neuronal microtubules and is essential for neuronal differentiation, brain development and synapse maturation. Misexpression of the protein contributes to the development of brain disorders in humans. However, despite numerous reports demonstrating the importance of MAP1B in regulation of the neuronal cytoskeleton during neurite extension and axon guidance, its mechanism of action is still elusive. Here we focus on the intrinsically disordered microtubule binding domain of the light chain of MAP1B. In order to obtain more detailed structural information about this domain we assigned NMR chemical shifts of backbone and aliphatic side chain atoms.
Collapse
Affiliation(s)
- Zsuzsanna Orbán-Németh
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 1, 1030 Vienna, Austria
| | - Morkos A. Henen
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Leonhard Geist
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Szymon Żerko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Saurabh Saxena
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Friedrich Propst
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 1, 1030 Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
19
|
Bermel W, Felli IC, Gonnelli L, Koźmiński W, Piai A, Pierattelli R, Zawadzka-Kazimierczuk A. High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 57:353-61. [PMID: 24203099 DOI: 10.1007/s10858-013-9793-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/23/2013] [Indexed: 05/13/2023]
Abstract
We present three novel exclusively heteronuclear 5D (13)C direct-detected NMR experiments, namely (H(N-flip)N)CONCACON, (HCA)CONCACON and (H)CACON(CA)CON, designed for easy sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The experiments proposed have been optimized to overcome the drawbacks which may dramatically complicate the characterization of IDPs by NMR, namely the small dispersion of chemical shifts and the fast exchange of the amide protons with the solvent. A fast and reliable automatic assignment of α-synuclein chemical shifts was obtained with the Tool for SMFT-based Assignment of Resonances (TSAR) program based on the information provided by these experiments.
Collapse
Affiliation(s)
- Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen, 76287, Rheinstetten, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Kızılsavaş G, Saxena S, Żerko S, Koźmiński W, Bister K, Konrat R. ¹H, ¹³C, and ¹⁵N backbone and side chain resonance assignments of the C-terminal DNA binding and dimerization domain of v-Myc. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:321-324. [PMID: 23179058 PMCID: PMC3758509 DOI: 10.1007/s12104-012-9437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 06/29/2024]
Abstract
The oncogenic transcription factor Myc is one of the most interesting members of the basic-helix-loop-helix-zipper (bHLHZip) protein family. Deregulation of Myc via gene amplification, chromosomal translocation or other mechanisms lead to tumorigenesis including Burkitt lymphoma, multiple myeloma, and many other malignancies. The oncogene myc is a highly potent transforming gene and capable to transform various cell types in vivo and in vitro. Its oncogenic activity initialized by deregulated expression leads to a shift of the equilibrium in the Myc/Max/Mad network towards Myc/Max complexes. The Myc/Max heterodimerization is a prerequisite for transcriptional functionality of Myc. Primarily, we are focusing on the apo-state of the C-terminal domain of v-Myc, the retroviral homolog of human c-Myc. Based on multi-dimensional NMR measurements v-Myc appears to be neither a fully structured nor a completely unstructured protein. The bHLHZip domain of v-Myc does not exist as a random coil but exhibits partially pre-formed α-helical regions in its apo-state. In order to elucidate the structural propensities of Myc in more detail, the backbone and side-chain assignments obtained here for apo-Myc are a crucial prerequisite for further NMR measurements.
Collapse
Affiliation(s)
- Gönül Kızılsavaş
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Saurabh Saxena
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Szymon Żerko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Robert Konrat
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
21
|
Geist L, Zawadzka-Kazimierczuk A, Saxena S, Żerko S, Koźmiński W, Konrat R. ¹H, ¹³C and ¹⁵N resonance assignments of human BASP1. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:315-319. [PMID: 23179057 PMCID: PMC3758512 DOI: 10.1007/s12104-012-9436-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/31/2012] [Indexed: 05/30/2023]
Abstract
Brain acid-soluble protein 1 (BASP1, CAP-23, NAP-22) appears to be implicated in diverse cellular processes. An N-terminally myristoylated form of BASP1 has been discovered to participate in the regulation of actin cytoskeleton dynamics in neurons, whereas non-myristoylated nuclear BASP1 acts as co-suppressor of the potent transcription regulator WT1 (Wilms' Tumor suppressor protein 1). Here we report NMR chemical shift assignment of recombinant human BASP1 fused to an N-terminal cleavable His6-tag.
Collapse
Affiliation(s)
- Leonhard Geist
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | | | - Saurabh Saxena
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Szymon Żerko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
22
|
Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. JOURNAL OF BIOMOLECULAR NMR 2013; 56:155-67. [PMID: 23625364 PMCID: PMC4048757 DOI: 10.1007/s10858-013-9732-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/17/2013] [Indexed: 05/05/2023]
Abstract
We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D (13)C-(13)C, (15)N-(13)C, or 3D (15)N-(13)C-(13)C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D (13)C-(13)C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-Cα-Cβ or N-Cα-Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.
Collapse
|