1
|
Pires DAT, Guedes IA, Pereira WL, Teixeira RR, Dardenne LE, Nascimento CJ, Figueroa-Villar JD. Isobenzofuran-1(3H)-ones as new tyrosinase inhibitors: Biological activity and interaction studies by molecular docking and NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140580. [PMID: 33278593 DOI: 10.1016/j.bbapap.2020.140580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Tyrosinase is a multifunctional, glycosylated and copper-containing oxidase enzyme that can be found in animals, plants, and fungi. It is involved in several biological processes such as melanin biosynthesis. In this work, a series of isobenzofuran-1(3H)-ones was evaluated as tyrosinase inhibitors. It was found that compounds phthalaldehydic acid (1), 3-(2,6-dihydroxy-4-isopropylphenyl)isobenzofuran-1(3H)-one (7), and 2-(3-oxo-1,3-dihydroisobenzofuran-1-yl)-1,3-phenylene diacetate (9) were the most potent compounds inhibiting tyrosinase activity in a concentration dependent manner. Ligand-enzyme NMR studies and docking investigations allowed to map the atoms of the ligands involved in the interaction with the copper atoms present in the active site of the tyrosinase. This behaviour is similar to kojic acid, a well know tyrosinase inhibitor and used as positive control in the biological assays. The findings herein described pave the way for future rational design of new tyrosinase inhibitors.
Collapse
Affiliation(s)
- Diego A T Pires
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Rua São Bartolomeu s/n, Vila Esperança, Luziânia, GO 72811-580, Brazil
| | - Isabella A Guedes
- Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ 25651-075, Brazil
| | - Wagner L Pereira
- Departamento de Química, Universidade Federal de Viçosa, Av. P. H. Rolfs, S/N, Viçosa, MG 36570-900, Brazil
| | - Róbson R Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P. H. Rolfs, S/N, Viçosa, MG 36570-900, Brazil
| | - Laurent E Dardenne
- Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ 25651-075, Brazil
| | - Claudia J Nascimento
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, Praia Vermelha, Rio de Janeiro, RJ 22290-250, Brazil.
| | - José D Figueroa-Villar
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro, RJ 22290-270, Brazil
| |
Collapse
|
2
|
The NMR2 Method to Determine Rapidly the Structure of the Binding Pocket of a Protein–Ligand Complex with High Accuracy. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structural characterization of complexes is crucial for a better understanding of biological processes and structure-based drug design. However, many protein–ligand structures are not solvable by X-ray crystallography, for example those with low affinity binders or dynamic binding sites. Such complexes are usually targeted by solution-state NMR spectroscopy. Unfortunately, structure calculation by NMR is very time consuming since all atoms in the complex need to be assigned to their respective chemical shifts. To circumvent this problem, we recently developed the Nuclear Magnetic Resonance Molecular Replacement (NMR2) method. NMR2 very quickly provides the complex structure of a binding pocket as measured by solution-state NMR. NMR2 circumvents the assignment of the protein by using previously determined structures and therefore speeds up the whole process from a couple of months to a couple of days. Here, we recall the main aspects of the method, show how to apply it, discuss its advantages over other methods and outline its limitations and future directions.
Collapse
|
3
|
Harner MJ, Mueller L, Robbins KJ, Reily MD. NMR in drug design. Arch Biochem Biophys 2017; 628:132-147. [DOI: 10.1016/j.abb.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/09/2023]
|
4
|
Onila I, ten Brink T, Fredriksson K, Codutti L, Mazur A, Griesinger C, Carlomagno T, Exner TE. On-the-Fly Integration of Data from a Spin-Diffusion-Based NMR Experiment into Protein-Ligand Docking. J Chem Inf Model 2015; 55:1962-72. [PMID: 26226383 DOI: 10.1021/acs.jcim.5b00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INPHARMA (interligand nuclear Overhauser enhancement for pharmacophore mapping) determines the relative orientation of two competitive ligands in the protein binding pocket. It is based on the observation of interligand transferred NOEs mediated by spin diffusion through protons of the protein and is, therefore, sensitive to the specific interactions of each of the two ligands with the protein. We show how this information can be directly included into a protein-ligand docking program to guide the prediction of the complex structures. Agreement between the experimental and back-calculated spectra based on the full relaxation matrix approach is translated into a score contribution that is combined with the scoring function ChemPLP of our docking tool PLANTS. This combined score is then used to predict the poses of five weakly bound cAMP-dependent protein kinase (PKA) ligands. After optimizing the setup, which finally also included trNOE data and optimized protonation states, very good success rates were obtained for all combinations of three ligands. For one additional ligand, no conclusive results could be obtained due to the ambiguous electron density of the ligand in the X-ray structure, which does not disprove alternative ligand poses. The failures of the remaining ligand are caused by suboptimal locations of specific protein side chains. Therefore, side-chain flexibility should be included in an improved INPHARMA-PLANTS version. This will reduce the strong dependence on the used protein input structure leading to improved scores overall, not only for this last ligand.
Collapse
Affiliation(s)
- Ionut Onila
- Institute of Pharmacy, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Chemistry and Zukunftskolleg, Universität Konstanz , 78457 Konstanz, Germany
| | - Tim ten Brink
- Department of Chemistry and Zukunftskolleg, Universität Konstanz , 78457 Konstanz, Germany
| | - Kai Fredriksson
- Institute of Pharmacy, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Chemistry and Zukunftskolleg, Universität Konstanz , 78457 Konstanz, Germany
| | - Luca Codutti
- Structural and Computational Biology Unit, EMBL , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Adam Mazur
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Teresa Carlomagno
- Structural and Computational Biology Unit, EMBL , Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Thomas E Exner
- Institute of Pharmacy, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Chemistry and Zukunftskolleg, Universität Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
5
|
Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations. Biochem Biophys Res Commun 2015; 457:467-72. [PMID: 25600810 DOI: 10.1016/j.bbrc.2015.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.
Collapse
Affiliation(s)
- Qing Liu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lu Yu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ying Xiong
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
6
|
Vögeli B. The nuclear Overhauser effect from a quantitative perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 78:1-46. [PMID: 24534087 DOI: 10.1016/j.pnmrs.2013.11.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/13/2013] [Indexed: 05/26/2023]
Abstract
The nuclear Overhauser enhancement or effect (NOE) is the most important measure in liquid-state NMR with macromolecules. Thus, the NOE is the subject of numerous reviews and books. Here, the NOE is revisited in light of our recently introduced measurements of exact nuclear Overhauser enhancements (eNOEs), which enabled the determination of multiple-state 3D protein structures. This review encompasses all relevant facets from the theoretical considerations to the use of eNOEs in multiple-state structure calculation. Important aspects include a detailed presentation of the relaxation theory relevant for the nuclear Overhauser effect, the estimation of the correction for spin diffusion, the experimental determination of the eNOEs, the conversion of eNOE rates into distances and validation of their quality, the distance-restraint classification and the protocols for calculation of structures and ensembles.
Collapse
Affiliation(s)
- Beat Vögeli
- Laboratory of Physical Chemistry, HCI F217, Wolfgang-Pauli-Str. 10, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| |
Collapse
|
7
|
Joseph-McCarthy D, Campbell AJ, Kern G, Moustakas D. Fragment-Based Lead Discovery and Design. J Chem Inf Model 2014; 54:693-704. [DOI: 10.1021/ci400731w] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Diane Joseph-McCarthy
- Infection Innovative Medicines Unit, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Arthur J. Campbell
- Infection Innovative Medicines Unit, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gunther Kern
- Infection Innovative Medicines Unit, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Demetri Moustakas
- Infection Innovative Medicines Unit, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|