1
|
Boisvert O, Létourneau D, Delattre P, Tremblay C, Jolibois É, Montagne M, Lavigne P. Zinc Fingers 10 and 11 of Miz-1 undergo conformational exchange to achieve specific DNA binding. Structure 2021; 30:623-636.e5. [PMID: 34963061 DOI: 10.1016/j.str.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Miz-1 (ZBTB17) is a poly-zinc finger BTB/POZ transcription factor with 12 consecutive C2H2 zinc fingers (ZFs) that binds transcriptional start sites (TSSs) to regulate the expression of genes involved in cell development and proliferation. As of now, it is not known which of the 12 consecutive ZFs are responsible for the recognition of the 24 base pair consensus sequence found at these TSSs. Evidence suggests ZFs 7-12 plays this role. We provide validation for this and describe the structural and dynamical characterization of unprecedented conformational exchange in the linker between ZFs 10 and 11. This conformational exchange uncouples ZFs 7-10 from 11 and 12 and promotes a scanning-recognition mechanism through which the two segments cooperate to bind two sub-sites at both ends of the consensus. We further show that this can result in the coiling of TSSs as part of Miz-1's mechanism of transcriptional transactivation.
Collapse
Affiliation(s)
- Olivier Boisvert
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Danny Létourneau
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Patrick Delattre
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cynthia Tremblay
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Émilie Jolibois
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Martin Montagne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Lavigne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
2
|
Zheng M, Waller MP. Yoink:An interaction-based partitioning API. J Comput Chem 2018; 39:799-806. [DOI: 10.1002/jcc.25146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Min Zheng
- Department of Physics and International Centre for Quantum and Molecular Structures; Shanghai University; Shanghai 200444 China
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40; Münster 48149 Germany
| | - Mark P. Waller
- Department of Physics and International Centre for Quantum and Molecular Structures; Shanghai University; Shanghai 200444 China
| |
Collapse
|
3
|
A missense mutation in zbtb17 blocks the earliest steps of T cell differentiation in zebrafish. Sci Rep 2017; 7:44145. [PMID: 28266617 PMCID: PMC5339814 DOI: 10.1038/srep44145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
T cells are an evolutionarily conserved feature of the adaptive immune systems of vertebrates. Comparative studies using evolutionarily distant species hold great promise for unraveling the genetic landscape underlying this process. To this end, we used ENU mutagenesis to generate mutant zebrafish with specific aberrations in early T cell development. Here, we describe the identification of a recessive missense mutation in the transcriptional regulator zbtb17 (Q562K), which affects the ninth zinc finger module of the protein. Homozygous mutant fish exhibit an early block of intrathymic T cell development, as a result of impaired thymus colonization owing to reduced expression of the gene encoding the homing receptor ccr9a, and inefficient T cell differentiation owing to reduced expression of socs1a. Our results reveal the zbtb17-socs1 axis as an evolutionarily conserved central regulatory module of early T cell development of vertebrates.
Collapse
|
4
|
Bédard M, Roy V, Montagne M, Lavigne P. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. J Biol Chem 2016; 292:3323-3340. [PMID: 28035002 DOI: 10.1074/jbc.m116.748699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
c-Myc-interacting zinc finger protein-1 (Miz-1) is a poly-Cys2His2 zinc finger (ZF) transcriptional regulator of many cell cycle genes. A Miz-1 DNA sequence consensus has recently been identified and has also unveiled Miz-1 functions in other cellular processes, underscoring its importance in the cell. Miz-1 contains 13 ZFs, but it is unknown why Miz-1 has so many ZFs and whether they recognize and bind DNA sequences in a typical fashion. Here, we used NMR to deduce the role of Miz-1 ZFs 1-4 in detecting the Miz-1 consensus sequence and preventing nonspecific DNA binding. In the construct containing the first 4 ZFs, we observed that ZFs 3 and 4 form an unusual compact and stable structure that restricts their motions. Disruption of this compact structure by an electrostatically mismatched A86K mutation profoundly affected the DNA binding properties of the WT construct. On the one hand, Miz1-4WT was found to bind the Miz-1 DNA consensus sequence weakly and through ZFs 1-3 only. On the other hand, the four ZFs in the structurally destabilized Miz1-4A86K mutant bound to the DNA consensus with a 30-fold increase in affinity (100 nm). The formation of such a thermodynamically stable but nonspecific complex is expected to slow down the rate of DNA scanning by Miz-1 during the search for its consensus sequence. Interestingly, we found that the motif stabilizing the compact structure between ZFs 3 and 4 is conserved and enriched in other long poly-ZF proteins. As discussed in detail, our findings support a general role of compact inter-ZF structures in minimizing the formation of off-target DNA complexes.
Collapse
Affiliation(s)
- Mikaël Bédard
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Vincent Roy
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Martin Montagne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Pierre Lavigne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
5
|
Bédard M, Maltais L, Montagne M, Lavigne P. Miz-1 and Max compete to engage c-Myc: implication for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1. Proteins 2016; 85:199-206. [PMID: 27859590 DOI: 10.1002/prot.25214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 11/12/2022]
Abstract
c-Myc is a basic helix-loop-helix leucine zipper (b-HLH-LZ) transcription factor deregulated in the majority of human cancers. As a heterodimer with Max, another b-HLH-LZ transcription factor, deregulated and persistent c-Myc accumulates at transcriptionally active promoters and enhancers and amplifies transcription. This leads to the so-called transcriptional addiction of tumor cells. Recent studies have showed that c-Myc transcriptional activities can be reversed by its association with Miz-1, a POZ transcription factor containing 13 classical zinc fingers. Although evidences have led to suggest that c-Myc interacts with both Miz-1 and Max to form a ternary repressive complex, earlier evidences also suggest that Miz-1 and Max may compete to engage c-Myc. In such a scenario, the Miz-1/c-Myc complex would be the entity responsible for the inhibition of c-Myc transcriptional amplification. Considering the implications of the Miz-1/c-Myc interaction, it is highly important to solve this duality. While two potential c-Myc interacting domains (hereafter termed MID) have been identified in Miz-1 by yeast two-hybrid, with the b-HLH-LZ as a bait, the biophysical characterization of these interactions has not been reported so far. Here, we report that the MID located between the 12th and 13th zinc finger of Miz-1 and the b-HLH-LZ of Max compete to form a complex with the b-HLH-LZ of c-Myc. Our results support the notion that the repressive action of Miz-1 on c-Myc does not rely on the formation of a ternary complex. The implications of these observations for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1 are discussed. Proteins 2017; 85:199-206. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mikaël Bédard
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada.,PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, G1V 0A6, Canada.,GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Québec, H3G 0B1, Canada
| | - Loïka Maltais
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada.,PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, G1V 0A6, Canada.,GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Québec, H3G 0B1, Canada
| | - Martin Montagne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada.,PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, G1V 0A6, Canada.,GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Québec, H3G 0B1, Canada
| | - Pierre Lavigne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada.,PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, G1V 0A6, Canada.,GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Québec, H3G 0B1, Canada
| |
Collapse
|
6
|
Tremblay C, Bédard M, Bonin MA, Lavigne P. Solution structure of the 13th C2H2 Zinc Finger of Miz-1. Biochem Biophys Res Commun 2016; 473:471-5. [PMID: 26972249 DOI: 10.1016/j.bbrc.2016.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Miz-1 is a BTB/POZ transcription factor that contains 13C2H2 Zinc Finger domains (ZF). Miz-1 transactivates and represses the transcription of a myriad of genes involved in many aspects of the biology of the cell. The detailed molecular interactions through which Miz-1 controls transcription, including its specific DNA binding via its ZF domains, remain to be understood and documented. In our effort to shed light into the structural biology of Miz-1, we have undertaken the determination of the structure of all its ZF and the characterization of their interactions with cognate DNA. The structure of ZF 1 to 10 have already been solved and characterized. Here, we present the structure of the synthetic Miz-1 ZF13 determined by 2D (1)H-(1)H NMR.
Collapse
Affiliation(s)
- Cynthia Tremblay
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada; PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada; GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada; PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada; GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Marc-André Bonin
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Pierre Lavigne
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada; PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l'Ingénierie des Protéines, Université Laval, Québec, Québec, Canada; GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Barrilleaux BL, Burow D, Lockwood SH, Yu A, Segal DJ, Knoepfler PS. Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS One 2014; 9:e101151. [PMID: 24983942 PMCID: PMC4077741 DOI: 10.1371/journal.pone.0101151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023] Open
Abstract
The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences—ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)—bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.
Collapse
Affiliation(s)
- Bonnie L. Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Dana Burow
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Sarah H. Lockwood
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Abigail Yu
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - David J. Segal
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|