1
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
2
|
Zhang DD, Sun XL, Liang ZY, Wang XY, Zhang LN. FAM96A and FAM96B function as new tumor suppressor genes in breast cancer through regulation of the Wnt/β-catenin signaling pathway. Life Sci 2022; 308:120983. [PMID: 36165859 DOI: 10.1016/j.lfs.2022.120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
AIMS Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Some studies have shown that FAM96A and FAM96B are significantly down-regulated in human gastrointestinal stromal tumors, colon cancer, and liver cancer. However, the molecular mechanisms of FAM96A/B in breast cancer are unknown. This work aims to explore the roles of FAM96A/B in breast cancer progression. MAIN METHODS Specific siRNAs were used to down-regulate FAM96A/B expression, and recombinant plasmids were used to up-regulate FAM96A/B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. The relationships among FAM96A/B, EMT and Wnt/β-catenin pathway were determined by analyzing expression changes of classical markers. KEY FINDINGS We found that FAM96A/B expression was down-regulated in breast cancer. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and caused cell cycle arrest. Conversely, FAM96A/B knockdown exhibited the opposite effects. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin pathway. Furthermore, a Wnt pathway inhibitor, XAV-939 reversed the promoting effects of FAM96A/B knockdown on breast cancer progression. SIGNIFICANCE Our findings suggest that FAM96A/B may function as new tumor suppressor genes and inhibit breast cancer progression via modulating Wnt/β-catenin pathway, which can provide the potential markers for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Lin Sun
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhao-Yuan Liang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin-Ya Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Zhao N, He M, Chen W, Jin P, Cao L, Deng J, Cheng X, Wang L. FAM96A suppresses epithelial-mesenchymal transition and tumor metastasis by inhibiting TGFβ1 signals. Life Sci 2022; 301:120607. [PMID: 35513087 DOI: 10.1016/j.lfs.2022.120607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Metastasis is the main cause of death in 90% of patients with tumors, and epithelial-mesenchymal transition (EMT) plays a key role in this process. Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved protein related to cytosolic iron assembly. However, no research has been conducted on its role in tumor metastasis. Bioinformatics analysis with Kaplan-Meier analysis showed that patients with lower FAM96A expression in different tumors had shorter survival times and poorer prognoses. Here, we identified FAM96A as a crucial regulator of the TGFβ signaling pathway because it inhibits TGFβ-mediated tumor metastasis and EMT. FAM96A did not affect the proliferation or apoptosis of tumor cells but significantly reduced their migration and invasion abilities in vitro. The colonization and metastatic abilities of FAM96A-knockout tumor cells were significantly enhanced in vivo. Furthermore, the overexpression of exogenous FAM96A inhibited TGFβ-induced EMT through the SMAD-mediated pathway and downregulated the expression of endogenous transforming growth factor-β1 (TGFβ1). These findings demonstrated a correlation between EMT and FAM96A gene expression for the first time, which is highly important for revealing the mechanism underlying tumor metastasis.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Minwei He
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Wei Chen
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Peng Jin
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Lulu Cao
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jinhai Deng
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xu Cheng
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Lu Wang
- Peking University Center for Human Disease Genomics, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| |
Collapse
|
4
|
Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nat Struct Mol Biol 2020; 27:735-742. [DOI: 10.1038/s41594-020-0454-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
|
5
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
6
|
Maione V, Cantini F, Severi M, Banci L. Investigating the role of the human CIA2A-CIAO1 complex in the maturation of aconitase. Biochim Biophys Acta Gen Subj 2018; 1862:1980-1987. [DOI: 10.1016/j.bbagen.2018.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023]
|
7
|
NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018; 23:molecules23092213. [PMID: 30200358 PMCID: PMC6205161 DOI: 10.3390/molecules23092213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
Collapse
|
8
|
Vo AT, Fleischman NM, Marquez MD, Camire EJ, Esonwune SU, Grossman JD, Gay KA, Cosman JA, Perlstein DL. Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics 2018; 9:1645-1654. [PMID: 29057997 DOI: 10.1039/c7mt00181a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.
Collapse
Affiliation(s)
- Amanda T Vo
- Department of Chemistry, Boston University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang WP, Gao HY. Combination therapy of hTERTR and FAM96A for hepatocellular carcinoma through enhancing apoptosis sensitivity. Exp Ther Med 2017; 15:641-648. [PMID: 29399066 PMCID: PMC5772592 DOI: 10.3892/etm.2017.5505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022] Open
Abstract
Avoidance of apoptosis induced by anticancer drugs is an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. Human telomerase reverse transcriptase receptor (hTERTR) is a potential anti-cancer agent for inhibiting tumor growth. Family with sequence similarity 96 member A (FAM96A) is a ubiquitous, conserved protein and possesses apoptosome-activating and pro-apoptotic tumor suppressor potential in hepatocellular carcinoma (HCC). In the present study, hTERTR and FAM96A were identified as efficient anti-cancer agents for activating apoptosomes and reducing tumor growth. The potential tumor suppressor function of combination treatment with hTERTR and FAM96A in HCC was also investigated. hTERTR and FAM96A proteins were expressed by genetic engineering and their anti-cancer function was explored in vitro and in vivo. Effects of hTERTR and FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and in a mouse model. The present results demonstrated that the therapeutic effects of hTERTR and FAM96A were effective for inhibiting tumor growth and inducing apoptosis of HCC cells in H22-bearing nude mice compared with single agent treatment. hTERTR and FAM96A were found to bind with apoptotic protease activating factor 1 and human telomerase reverse transcriptase, which enhanced the apoptosis of tumor cells and apoptosis sensitivity. In addition, hTERTR and FAM96A therapy enhanced cytotoxic effects by cytotoxic T lymphocyte responses, interferon-γ release, T lymphocytes infiltration and apoptosis on tumor cells. Furthermore, hTERTR and FAM96A protein inhibited tumor growth in HCC mice. In conclusion, the present findings suggested that combination therapy with hTERTR and FAM96A may serve as novel tumor suppressor agents.
Collapse
Affiliation(s)
- Wan-Peng Wang
- Department of Infectious Diseases, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hai-Ying Gao
- Department of Infectious Diseases, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
10
|
Mashruwala AA, Boyd JM. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr Genet 2017; 64:9-16. [PMID: 28589301 DOI: 10.1007/s00294-017-0716-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron-sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
11
|
Zhang MY, Wang JP. A multi-target protein of hTERTR-FAM96A presents significant anticancer potent in the treatment of hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317698341. [PMID: 28443470 DOI: 10.1177/1010428317698341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The abilities to escape apoptosis induced by anticancer drugs are an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. In this study, we identified hTERTR-FAM96A (human telomerase reverse transcriptase–family with sequence similarity 96 member A) as a new efficient agent for apoptosome-activating and anti-tumor protein and investigated the potential tumor suppressor function in hepatocellular carcinoma. The hTERTR-FAM96A fusion protein was constructed by genetic engineering and its anticancer function of hTERTR-FAM96A was explored in vitro and in vivo by investigating the possible preclinical outcomes. Effects of hTERTR-FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and tumors. Our results showed that the therapeutic effects of hTERTR-FAM96A were highly effective for inhibiting tumor growth and inducing apoptosis of hepatocellular carcinoma cells in H22-bearing nude mice. The hTERTR-FAM96A fusion protein could specifically bind with Apaf-1 and hTERT, which further induced apoptosis of hepatocellular carcinoma cells and improved apoptosis sensitivity. Our results indicated that hTERTR-FAM96A treatment enhanced cytotoxic effects by upregulation of cytotoxic T lymphocyte responses, interferon-γ release, and T lymphocyte infiltration. In addition, hTERTR-FAM96A led to tumor-specific immunologic cytotoxicity through increasing apoptotic body on hepatocellular tumors. Furthermore, hTERTR-FAM96A dramatically inhibited tumor growth, reduced death rate, and prolonged mice survival in hepatocellular carcinoma mice derived from three independent hepatocellular carcinoma mice cohorts compared to control groups. In summary, our data suggest that hTERTR-FAM96A may serve as an efficient anti-tumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:1253-71. [PMID: 25655665 PMCID: PMC4576882 DOI: 10.1016/j.bbamcr.2015.01.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life - the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Chi-Lin Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Justin P Ishida
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
13
|
Schwamb B, Pick R, Fernández SBM, Völp K, Heering J, Dötsch V, Bösser S, Jung J, Beinoraviciute-Kellner R, Wesely J, Zörnig I, Hammerschmidt M, Nowak M, Penzel R, Zatloukal K, Joos S, Rieker RJ, Agaimy A, Söder S, Reid-Lombardo KM, Kendrick ML, Bardsley MR, Hayashi Y, Asuzu DT, Syed SA, Ordog T, Zörnig M. FAM96A is a novel pro-apoptotic tumor suppressor in gastrointestinal stromal tumors. Int J Cancer 2015; 137:1318-29. [PMID: 25716227 DOI: 10.1002/ijc.29498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 02/13/2015] [Indexed: 01/31/2023]
Abstract
The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.
Collapse
Affiliation(s)
- Bettina Schwamb
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Robert Pick
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Sara Beatriz Mateus Fernández
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Kirsten Völp
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Susanne Bösser
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Jennifer Jung
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Rasa Beinoraviciute-Kellner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Josephine Wesely
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 305, Heidelberg, Germany
| | | | - Matthias Nowak
- Max-Planck Institute of Immunobiology, Stuebeweg 51, Freiburg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, a-8036, Austria
| | - Stefan Joos
- Deutsches Krebsforschungszentrum DKFZ (B060), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ralf Joachim Rieker
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | - Stephan Söder
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | | | | | - Michael R Bardsley
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Yujiro Hayashi
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - David T Asuzu
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Sabriya A Syed
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Tamas Ordog
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| |
Collapse
|